Antonin Lavigne, Thomas Géhin, Benoît Gilquin, Laetitia-Eiko Xerri, Marc Veillerot, Vincent Jousseaume, Yann Chevolot, Magali Phaner-Goutorbe, Christelle Yeromonahos
{"title":"Effects of the physico-chemical properties of amino acids and chemically functionalized surfaces on DIOS-MS analysis.","authors":"Antonin Lavigne, Thomas Géhin, Benoît Gilquin, Laetitia-Eiko Xerri, Marc Veillerot, Vincent Jousseaume, Yann Chevolot, Magali Phaner-Goutorbe, Christelle Yeromonahos","doi":"10.1016/j.ab.2025.115792","DOIUrl":null,"url":null,"abstract":"<p><p>Desorption ionisation on silicon mass spectrometry (DIOS-MS) allows for the detection of low molecular weight species from fluid samples. However, this method remains scarcely used for clinical diagnosis likely because of a lack of knowledge about the desorption/ionization mechanism as well as about the interplay between the surface and analyte properties which are effective in desorption/ionization, impeding the optimization of the DIOS-MS analysis. Herein, the normalized intensity of the DIOS-MS peaks at [M+H]<sup>+</sup> of seven amino acids on four different porous silicon modified surfaces are investigated. These amino acids (arginine, phenylalanine, methionine, glutamine, leucine, cysteine and valine) have different isoelectric points, proton affinities, and octanol-water partition coefficients. The four selected surfaces were oxidized porous silicon (SiO<sub>2</sub>), the same porous silicon modified with a propyl dimethyl ethoxy silane, octadecyl dimethyl ethoxy silane or 3 amino propyl dimethyl ethoxy silane (CH<sub>3</sub>-short, CH<sub>3</sub>-long and NH<sub>3</sub><sup>+</sup>, respectively). These surfaces present different electrical charges, alkyl chain lengths, and hydrophilic/hydrophobic properties. For each surface, the intensities of the protonated molecules ([M+H]<sup>+</sup>) are discussed with respect to the electrical charge and proton affinity of the amino acids, their z-distributions inside the pores (determined by time of flight secondary ion mass spectrometry profiling), their surface interaction energies (calculated by molecular dynamics simulations), the interfacial water content and the proton availability for each surface.</p>","PeriodicalId":7830,"journal":{"name":"Analytical biochemistry","volume":" ","pages":"115792"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.ab.2025.115792","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Desorption ionisation on silicon mass spectrometry (DIOS-MS) allows for the detection of low molecular weight species from fluid samples. However, this method remains scarcely used for clinical diagnosis likely because of a lack of knowledge about the desorption/ionization mechanism as well as about the interplay between the surface and analyte properties which are effective in desorption/ionization, impeding the optimization of the DIOS-MS analysis. Herein, the normalized intensity of the DIOS-MS peaks at [M+H]+ of seven amino acids on four different porous silicon modified surfaces are investigated. These amino acids (arginine, phenylalanine, methionine, glutamine, leucine, cysteine and valine) have different isoelectric points, proton affinities, and octanol-water partition coefficients. The four selected surfaces were oxidized porous silicon (SiO2), the same porous silicon modified with a propyl dimethyl ethoxy silane, octadecyl dimethyl ethoxy silane or 3 amino propyl dimethyl ethoxy silane (CH3-short, CH3-long and NH3+, respectively). These surfaces present different electrical charges, alkyl chain lengths, and hydrophilic/hydrophobic properties. For each surface, the intensities of the protonated molecules ([M+H]+) are discussed with respect to the electrical charge and proton affinity of the amino acids, their z-distributions inside the pores (determined by time of flight secondary ion mass spectrometry profiling), their surface interaction energies (calculated by molecular dynamics simulations), the interfacial water content and the proton availability for each surface.
期刊介绍:
The journal''s title Analytical Biochemistry: Methods in the Biological Sciences declares its broad scope: methods for the basic biological sciences that include biochemistry, molecular genetics, cell biology, proteomics, immunology, bioinformatics and wherever the frontiers of research take the field.
The emphasis is on methods from the strictly analytical to the more preparative that would include novel approaches to protein purification as well as improvements in cell and organ culture. The actual techniques are equally inclusive ranging from aptamers to zymology.
The journal has been particularly active in:
-Analytical techniques for biological molecules-
Aptamer selection and utilization-
Biosensors-
Chromatography-
Cloning, sequencing and mutagenesis-
Electrochemical methods-
Electrophoresis-
Enzyme characterization methods-
Immunological approaches-
Mass spectrometry of proteins and nucleic acids-
Metabolomics-
Nano level techniques-
Optical spectroscopy in all its forms.
The journal is reluctant to include most drug and strictly clinical studies as there are more suitable publication platforms for these types of papers.