Haoran Zheng , Zhigang Du , Chengfeng Jia , Linna Zhu , Shiming He , Jialin Mei
{"title":"Evaluating the effectiveness of rhythmic visual guidance technology for mitigating driving risks in highway tunnel groups: A simulation study","authors":"Haoran Zheng , Zhigang Du , Chengfeng Jia , Linna Zhu , Shiming He , Jialin Mei","doi":"10.1016/j.aap.2025.107940","DOIUrl":null,"url":null,"abstract":"<div><div>Driving in highway tunnel groups necessitates frequent adaptation to drastic changes in the traffic environment, thereby increasing driving difficulty and risk. This study integrates drivers’ preferences for rhythmic information with the inherent rhythmic characteristics of tunnel group structures to propose a new and adaptive method to mitigate driving risks using rhythmic visual guidance (RVG) technology. Unlike traditional visual guidance systems, which often rely on static signals, RVG utilizes dynamic, rhythmically varying cues to capture drivers’ attention and improve situational awareness more effectively. By employing principles of fuzzy mathematics, the study quantifies the applicability of various rhythmic forms in visual guidance technology and establishes priority application principles for undulating and staggered rhythms. After verifying the accuracy of the simulation model, the effectiveness of RVG technology in mitigating driving risks in highway tunnel groups was analyzed using lateral offset, driving speed, and vehicle acceleration as evaluation metrics. The findings reveal that RVG technology significantly reduces vehicle lateral offset and enhances drivers’ perception and control of tunnel sidewalls and driving trajectories. This effect is particularly pronounced under limited lighting conditions or in large tunnel groups with extended driving distances. Regardless of whether the lighting level is set at 0% or 100% of the standard brightness, the implementation of RVG results in reduced vehicle driving speeds. The variation in the 25th to 75th percentile distribution of driving speeds was insignificant, demonstrating that RVG technology effectively regulates driving speed and is not significantly affected by lighting conditions. Furthermore, when the lighting level is set at 100% of the standard brightness, the 25th to 75th percentile distribution interval of driving speeds is [89.576, 102.416], indicating the highest and least stable driving speeds suggests that blindly increasing tunnel lighting levels not only raises operating costs but may also adversely affect driving safety. This study provides novel insights into applying dynamic visual cues for highway tunnel groups’ traffic operation and safety management. It has significant practical engineering value for guiding the low-carbon design of tunnel groups.</div></div>","PeriodicalId":6926,"journal":{"name":"Accident; analysis and prevention","volume":"212 ","pages":"Article 107940"},"PeriodicalIF":5.7000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accident; analysis and prevention","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001457525000260","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ERGONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Driving in highway tunnel groups necessitates frequent adaptation to drastic changes in the traffic environment, thereby increasing driving difficulty and risk. This study integrates drivers’ preferences for rhythmic information with the inherent rhythmic characteristics of tunnel group structures to propose a new and adaptive method to mitigate driving risks using rhythmic visual guidance (RVG) technology. Unlike traditional visual guidance systems, which often rely on static signals, RVG utilizes dynamic, rhythmically varying cues to capture drivers’ attention and improve situational awareness more effectively. By employing principles of fuzzy mathematics, the study quantifies the applicability of various rhythmic forms in visual guidance technology and establishes priority application principles for undulating and staggered rhythms. After verifying the accuracy of the simulation model, the effectiveness of RVG technology in mitigating driving risks in highway tunnel groups was analyzed using lateral offset, driving speed, and vehicle acceleration as evaluation metrics. The findings reveal that RVG technology significantly reduces vehicle lateral offset and enhances drivers’ perception and control of tunnel sidewalls and driving trajectories. This effect is particularly pronounced under limited lighting conditions or in large tunnel groups with extended driving distances. Regardless of whether the lighting level is set at 0% or 100% of the standard brightness, the implementation of RVG results in reduced vehicle driving speeds. The variation in the 25th to 75th percentile distribution of driving speeds was insignificant, demonstrating that RVG technology effectively regulates driving speed and is not significantly affected by lighting conditions. Furthermore, when the lighting level is set at 100% of the standard brightness, the 25th to 75th percentile distribution interval of driving speeds is [89.576, 102.416], indicating the highest and least stable driving speeds suggests that blindly increasing tunnel lighting levels not only raises operating costs but may also adversely affect driving safety. This study provides novel insights into applying dynamic visual cues for highway tunnel groups’ traffic operation and safety management. It has significant practical engineering value for guiding the low-carbon design of tunnel groups.
期刊介绍:
Accident Analysis & Prevention provides wide coverage of the general areas relating to accidental injury and damage, including the pre-injury and immediate post-injury phases. Published papers deal with medical, legal, economic, educational, behavioral, theoretical or empirical aspects of transportation accidents, as well as with accidents at other sites. Selected topics within the scope of the Journal may include: studies of human, environmental and vehicular factors influencing the occurrence, type and severity of accidents and injury; the design, implementation and evaluation of countermeasures; biomechanics of impact and human tolerance limits to injury; modelling and statistical analysis of accident data; policy, planning and decision-making in safety.