{"title":"Impact of mechanotransduction on gene expression changes in periodontal ligament during orthodontic tooth movement.","authors":"Suzu Chida, Tomoki Chiba, Yutaro Uchida, Takahide Matsushima, Ryota Kurimoto, Takayuki Miyazaki, Lisa Yagasaki, Satoshi Nakamura, Emiko Mihara, Junichi Takagi, Keiji Moriyama, Hiroshi Asahara","doi":"10.1007/s00774-025-01581-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>The periodontal ligament (PDL) is a structure between the alveolar bone and cementum, essential for tooth stability and composed of diverse cell types. Mohawk homeobox (Mkx) is a master transcription factor that regulates tendon and ligament homeostasis. However, the specific cell populations expressing Mkx and its role in mechanotransduction during orthodontic tooth movement (OTM) remain unclear.</p><p><strong>Materials and methods: </strong>We conducted single-cell RNA sequencing on wild-type rat PDL at 0 day, 1 week, and 2 weeks of post-OTM using coil springs to elucidate Mkx's function and the changes in cell populations under continuous mechanical stimulation. In addition, RT-qPCR was performed to assess the relationship between tenogenic gene expression and Mkx expression in human PDL cells.</p><p><strong>Results: </strong>The rat PDL was identified to consist of 14 clusters, with Mkx and Scleraxis (Scx) expressed in distinct cell populations. Collagen and ECM production increased throughout the OTM period, while the sterile inflammatory response was initially heightened and later diminished, indicating that bone remodeling occurs later in the inflammatory response. Overexpression of MKX in human PDL cells enhanced COL1A1 and DECORIN expression.</p><p><strong>Conclusion: </strong>Mechanical stimulation of the PDL appears to trigger an aseptic inflammatory response that disrupts PDL homeostasis and promotes bone remodeling. Mkx may exert a protective effect on the PDL during mechanical stimulation.</p>","PeriodicalId":15116,"journal":{"name":"Journal of Bone and Mineral Metabolism","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bone and Mineral Metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00774-025-01581-3","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: The periodontal ligament (PDL) is a structure between the alveolar bone and cementum, essential for tooth stability and composed of diverse cell types. Mohawk homeobox (Mkx) is a master transcription factor that regulates tendon and ligament homeostasis. However, the specific cell populations expressing Mkx and its role in mechanotransduction during orthodontic tooth movement (OTM) remain unclear.
Materials and methods: We conducted single-cell RNA sequencing on wild-type rat PDL at 0 day, 1 week, and 2 weeks of post-OTM using coil springs to elucidate Mkx's function and the changes in cell populations under continuous mechanical stimulation. In addition, RT-qPCR was performed to assess the relationship between tenogenic gene expression and Mkx expression in human PDL cells.
Results: The rat PDL was identified to consist of 14 clusters, with Mkx and Scleraxis (Scx) expressed in distinct cell populations. Collagen and ECM production increased throughout the OTM period, while the sterile inflammatory response was initially heightened and later diminished, indicating that bone remodeling occurs later in the inflammatory response. Overexpression of MKX in human PDL cells enhanced COL1A1 and DECORIN expression.
Conclusion: Mechanical stimulation of the PDL appears to trigger an aseptic inflammatory response that disrupts PDL homeostasis and promotes bone remodeling. Mkx may exert a protective effect on the PDL during mechanical stimulation.
期刊介绍:
The Journal of Bone and Mineral Metabolism (JBMM) provides an international forum for researchers and clinicians to present and discuss topics relevant to bone, teeth, and mineral metabolism, as well as joint and musculoskeletal disorders. The journal welcomes the submission of manuscripts from any country. Membership in the society is not a prerequisite for submission. Acceptance is based on the originality, significance, and validity of the material presented. The journal is aimed at researchers and clinicians dedicated to improvements in research, development, and patient-care in the fields of bone and mineral metabolism.