Efficient enrichment and sensitive determination of endocrine disruptors in PPCPs by novel magnetic covalent organic framework extraction coupled with HPLC-MS/MS
Zheng Hu , Yuhang Yang , Zhe Li , Qiuying Tao , Yinghong Huang , Xian Wang
{"title":"Efficient enrichment and sensitive determination of endocrine disruptors in PPCPs by novel magnetic covalent organic framework extraction coupled with HPLC-MS/MS","authors":"Zheng Hu , Yuhang Yang , Zhe Li , Qiuying Tao , Yinghong Huang , Xian Wang","doi":"10.1016/j.talanta.2025.127667","DOIUrl":null,"url":null,"abstract":"<div><div>Endocrine-disrupting chemicals (EDCs) are a growing class of pollutants commonly found in environmental matrices due to their extensive use in pharmaceuticals and personal care products (PPCPs). In this study, a novel magnetic covalent organic framework (COF), Fe<sub>3</sub>O<sub>4</sub>–COOH@TFP-BHBD, was successfully synthesized and utilized as an adsorbent for magnetic solid-phase extraction (MSPE) of EDCs from PPCPs. The core-shell structured adsorbent demonstrated a high specific surface area, strong magnetic responsiveness and excellent stability. A COF-MSPE-high-performance liquid chromatography-tandem mass spectrometry (COF-MSPE-HPLC-MS/MS) method was developed for the quantitative analysis of EDCs in PPCPs. Under the optimized condition, the detection and quantification limits of this method reached as low as 0.001–0.007 ng/mL and 0.004–0.025 ng/mL, respectively. This method was validated and proven capable to analyze real PPCP samples, while the spiked recovery rates in ranged from 85.62 to 107.83 % with RSD of 2.28–8.58 %. Moreover, the adsorption mechanism was investigated using density functional theory (DFT) calculations. The DFT results revealed that the efficient enrichment capacity of Fe<sub>3</sub>O<sub>4</sub>–COOH@TFP-BHBD for EDCs can be attributed to π-π interactions and hydrogen bondings. This proposed method provides excellent adsorption ability and sensitivity for the extraction and precise detection of EDCs in PPCPs.</div></div>","PeriodicalId":435,"journal":{"name":"Talanta","volume":"287 ","pages":"Article 127667"},"PeriodicalIF":5.6000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Talanta","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0039914025001535","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Endocrine-disrupting chemicals (EDCs) are a growing class of pollutants commonly found in environmental matrices due to their extensive use in pharmaceuticals and personal care products (PPCPs). In this study, a novel magnetic covalent organic framework (COF), Fe3O4–COOH@TFP-BHBD, was successfully synthesized and utilized as an adsorbent for magnetic solid-phase extraction (MSPE) of EDCs from PPCPs. The core-shell structured adsorbent demonstrated a high specific surface area, strong magnetic responsiveness and excellent stability. A COF-MSPE-high-performance liquid chromatography-tandem mass spectrometry (COF-MSPE-HPLC-MS/MS) method was developed for the quantitative analysis of EDCs in PPCPs. Under the optimized condition, the detection and quantification limits of this method reached as low as 0.001–0.007 ng/mL and 0.004–0.025 ng/mL, respectively. This method was validated and proven capable to analyze real PPCP samples, while the spiked recovery rates in ranged from 85.62 to 107.83 % with RSD of 2.28–8.58 %. Moreover, the adsorption mechanism was investigated using density functional theory (DFT) calculations. The DFT results revealed that the efficient enrichment capacity of Fe3O4–COOH@TFP-BHBD for EDCs can be attributed to π-π interactions and hydrogen bondings. This proposed method provides excellent adsorption ability and sensitivity for the extraction and precise detection of EDCs in PPCPs.
期刊介绍:
Talanta provides a forum for the publication of original research papers, short communications, and critical reviews in all branches of pure and applied analytical chemistry. Papers are evaluated based on established guidelines, including the fundamental nature of the study, scientific novelty, substantial improvement or advantage over existing technology or methods, and demonstrated analytical applicability. Original research papers on fundamental studies, and on novel sensor and instrumentation developments, are encouraged. Novel or improved applications in areas such as clinical and biological chemistry, environmental analysis, geochemistry, materials science and engineering, and analytical platforms for omics development are welcome.
Analytical performance of methods should be determined, including interference and matrix effects, and methods should be validated by comparison with a standard method, or analysis of a certified reference material. Simple spiking recoveries may not be sufficient. The developed method should especially comprise information on selectivity, sensitivity, detection limits, accuracy, and reliability. However, applying official validation or robustness studies to a routine method or technique does not necessarily constitute novelty. Proper statistical treatment of the data should be provided. Relevant literature should be cited, including related publications by the authors, and authors should discuss how their proposed methodology compares with previously reported methods.