Decoding omicron: Genetic insight into its transmission dynamics, severity spectrum and ever-evolving strategies of immune escape in comparison with other SARS-CoV-2 variants
{"title":"Decoding omicron: Genetic insight into its transmission dynamics, severity spectrum and ever-evolving strategies of immune escape in comparison with other SARS-CoV-2 variants","authors":"Kundan Tandel , Divya Niveditha , Sanjay Pratap Singh , Kavita Bala Anand , Vaishnavi Shinde , Mayank Ghedia , Ashwini Sondakar , Mahesh Reddy","doi":"10.1016/j.diagmicrobio.2025.116705","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>The coronavirus disease 2019 (COVID-19) pandemic, driven by the rapid evolution of the SARS-CoV-2 virus, has led to the emergence of multiple variants with significant impacts on global health. This study aims to analyze the evolutionary trends and mutational landscape of SARS-CoV-2 variants circulating in Pune, Maharashtra, India, from August 2022 to April 2024. Using comprehensive genomic surveillance data, we identified the predominance of variants such as BA.2.75, XBB.x, and the newly emerged subvariants JN.1, KP.1, and KP.2. These subvariants, belonging to the BA.2.86 lineage, have raised concerns owing to their potential for increased transmissibility and immune evasion.</div></div><div><h3>Results</h3><div>Phylogenetic analysis of 84 sequenced samples from Pune revealed 18 distinct lineages, with JN.1 and KP.2 forming a novel branch compared with their ancestral lineage, BA.2. Detailed mutational analysis highlighted key mutations in the N-terminal domain (NTD) and receptor-binding domain (RBD) of the spike protein, affecting viral stability, ACE2 binding affinity, and neutralizing antibody escape. Our findings, along with the predictions of SpikePro, suggest that the combination of these mutations enhances the viral fitness of JN.1 and KP.2, contributing to their rapid emergence and spread.</div></div><div><h3>Conclusion</h3><div>This study underscores the importance of continuous genomic surveillance and advanced computational modeling to track and predict the evolutionary trajectories of SARS-CoV-2 variants. The insights gained from this research are crucial for informing public health strategies, vaccine updates, and therapeutic interventions to mitigate the impact of current and future SARS-CoV-2 variants.</div></div>","PeriodicalId":11329,"journal":{"name":"Diagnostic microbiology and infectious disease","volume":"111 3","pages":"Article 116705"},"PeriodicalIF":2.1000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostic microbiology and infectious disease","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0732889325000288","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0
Abstract
Background
The coronavirus disease 2019 (COVID-19) pandemic, driven by the rapid evolution of the SARS-CoV-2 virus, has led to the emergence of multiple variants with significant impacts on global health. This study aims to analyze the evolutionary trends and mutational landscape of SARS-CoV-2 variants circulating in Pune, Maharashtra, India, from August 2022 to April 2024. Using comprehensive genomic surveillance data, we identified the predominance of variants such as BA.2.75, XBB.x, and the newly emerged subvariants JN.1, KP.1, and KP.2. These subvariants, belonging to the BA.2.86 lineage, have raised concerns owing to their potential for increased transmissibility and immune evasion.
Results
Phylogenetic analysis of 84 sequenced samples from Pune revealed 18 distinct lineages, with JN.1 and KP.2 forming a novel branch compared with their ancestral lineage, BA.2. Detailed mutational analysis highlighted key mutations in the N-terminal domain (NTD) and receptor-binding domain (RBD) of the spike protein, affecting viral stability, ACE2 binding affinity, and neutralizing antibody escape. Our findings, along with the predictions of SpikePro, suggest that the combination of these mutations enhances the viral fitness of JN.1 and KP.2, contributing to their rapid emergence and spread.
Conclusion
This study underscores the importance of continuous genomic surveillance and advanced computational modeling to track and predict the evolutionary trajectories of SARS-CoV-2 variants. The insights gained from this research are crucial for informing public health strategies, vaccine updates, and therapeutic interventions to mitigate the impact of current and future SARS-CoV-2 variants.
期刊介绍:
Diagnostic Microbiology and Infectious Disease keeps you informed of the latest developments in clinical microbiology and the diagnosis and treatment of infectious diseases. Packed with rigorously peer-reviewed articles and studies in bacteriology, immunology, immunoserology, infectious diseases, mycology, parasitology, and virology, the journal examines new procedures, unusual cases, controversial issues, and important new literature. Diagnostic Microbiology and Infectious Disease distinguished independent editorial board, consisting of experts from many medical specialties, ensures you extensive and authoritative coverage.