Standardized extract of Ginkgo biloba induced memory consolidation in female mice with hypofunction of vesicular acetylcholine transporter

IF 2.6 3区 心理学 Q2 BEHAVIORAL SCIENCES
Beatriz G. Muratori , Irina Emanuela T. da Veiga , Gleiciene N. Medeiros , Sofia M.S. E. Silva , Andressa G. Soliani , Carla Máximo Prado , Suzete M. Cerutti
{"title":"Standardized extract of Ginkgo biloba induced memory consolidation in female mice with hypofunction of vesicular acetylcholine transporter","authors":"Beatriz G. Muratori ,&nbsp;Irina Emanuela T. da Veiga ,&nbsp;Gleiciene N. Medeiros ,&nbsp;Sofia M.S. E. Silva ,&nbsp;Andressa G. Soliani ,&nbsp;Carla Máximo Prado ,&nbsp;Suzete M. Cerutti","doi":"10.1016/j.bbr.2025.115455","DOIUrl":null,"url":null,"abstract":"<div><div>Basal forebrain cholinergic neurons are pivotal for cholinergic signaling in the neocortex and hippocampal formation, crucially implicated in neurodegenerative diseases like late-onset Alzheimer's disease (LOAD), recognition memory impairments, and decision-making. The acetylcholine transporter (VAChT) is essential for loading acetylcholine into synaptic vesicles. Building on our previous findings showing that <em>Ginkgo biloba</em> extract (EGb) preserves recognition memory, we hypothesized EGb would enhance memory in female mice with varying VAChT reductions. We also explored whether reduced cholinergic signaling induces anxiety-like behavior and whether EGb could alleviate such symptoms. Three-month-old female mice with severe VAChT reduction (knockdown homozygotes; VAChT KD<sup>HOM</sup>), moderate reduction (heterozygotes; VAChT KD<sup>HET</sup>), and wild-type (WT) mice received the vehicle, 5 mg/kg Donepezil, or EGb at doses of 250, 500, and 1000 mg/kg for 30 days. Memory assessments included aversive tasks like discriminative avoidance memory and non-aversive tasks like object recognition and location memory. We assessed VAChT protein expression in the hippocampal formation (HF) using Western blotting and quantified VAChT-immunopositive cells (IR<sup>+</sup>) in specific HF subfields (dCA1, dCA3, dDG) using immunohistochemistry. Chronic EGb treatment significantly improved long-term memory in female VAChT KD<sup>HOM</sup> mice in object recognition and locations memories in a dose-dependent manner, unlike Donepezil. Enhanced memory was correlated with an increase in VAChT-IR<sup>+</sup> cells in the dCA1 of VAChT KD<sup>HOM</sup> mice. Additionally, EGb reduced VAChT-IR<sup>+</sup> cells in the dDG of VAChT KD<sup>HET</sup> mice, which was associated with decreased anxiety-like behavior. These findings suggest that EGb effectively mitigates deficits caused by cholinergic deficiency in hippocampal-dependent memory consolidation, thereby improving our understanding of its role in modulating long-term memory and hippocampal plasticity.</div></div>","PeriodicalId":8823,"journal":{"name":"Behavioural Brain Research","volume":"482 ","pages":"Article 115455"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavioural Brain Research","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166432825000415","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Basal forebrain cholinergic neurons are pivotal for cholinergic signaling in the neocortex and hippocampal formation, crucially implicated in neurodegenerative diseases like late-onset Alzheimer's disease (LOAD), recognition memory impairments, and decision-making. The acetylcholine transporter (VAChT) is essential for loading acetylcholine into synaptic vesicles. Building on our previous findings showing that Ginkgo biloba extract (EGb) preserves recognition memory, we hypothesized EGb would enhance memory in female mice with varying VAChT reductions. We also explored whether reduced cholinergic signaling induces anxiety-like behavior and whether EGb could alleviate such symptoms. Three-month-old female mice with severe VAChT reduction (knockdown homozygotes; VAChT KDHOM), moderate reduction (heterozygotes; VAChT KDHET), and wild-type (WT) mice received the vehicle, 5 mg/kg Donepezil, or EGb at doses of 250, 500, and 1000 mg/kg for 30 days. Memory assessments included aversive tasks like discriminative avoidance memory and non-aversive tasks like object recognition and location memory. We assessed VAChT protein expression in the hippocampal formation (HF) using Western blotting and quantified VAChT-immunopositive cells (IR+) in specific HF subfields (dCA1, dCA3, dDG) using immunohistochemistry. Chronic EGb treatment significantly improved long-term memory in female VAChT KDHOM mice in object recognition and locations memories in a dose-dependent manner, unlike Donepezil. Enhanced memory was correlated with an increase in VAChT-IR+ cells in the dCA1 of VAChT KDHOM mice. Additionally, EGb reduced VAChT-IR+ cells in the dDG of VAChT KDHET mice, which was associated with decreased anxiety-like behavior. These findings suggest that EGb effectively mitigates deficits caused by cholinergic deficiency in hippocampal-dependent memory consolidation, thereby improving our understanding of its role in modulating long-term memory and hippocampal plasticity.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Behavioural Brain Research
Behavioural Brain Research 医学-行为科学
CiteScore
5.60
自引率
0.00%
发文量
383
审稿时长
61 days
期刊介绍: Behavioural Brain Research is an international, interdisciplinary journal dedicated to the publication of articles in the field of behavioural neuroscience, broadly defined. Contributions from the entire range of disciplines that comprise the neurosciences, behavioural sciences or cognitive sciences are appropriate, as long as the goal is to delineate the neural mechanisms underlying behaviour. Thus, studies may range from neurophysiological, neuroanatomical, neurochemical or neuropharmacological analysis of brain-behaviour relations, including the use of molecular genetic or behavioural genetic approaches, to studies that involve the use of brain imaging techniques, to neuroethological studies. Reports of original research, of major methodological advances, or of novel conceptual approaches are all encouraged. The journal will also consider critical reviews on selected topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信