From physiology to pathology: Emerging roles of GPER in cardiovascular disease

IF 12 1区 医学 Q1 PHARMACOLOGY & PHARMACY
Zixuan Wang , Junren Liu , Ying Chen , Yi Tang , Ting Chen , Chang Zhou , Shuo Wang , Ranbo Chang , Zhongshuai Chen , Wenqing Yang , Zhen Guo , Ting Chen
{"title":"From physiology to pathology: Emerging roles of GPER in cardiovascular disease","authors":"Zixuan Wang ,&nbsp;Junren Liu ,&nbsp;Ying Chen ,&nbsp;Yi Tang ,&nbsp;Ting Chen ,&nbsp;Chang Zhou ,&nbsp;Shuo Wang ,&nbsp;Ranbo Chang ,&nbsp;Zhongshuai Chen ,&nbsp;Wenqing Yang ,&nbsp;Zhen Guo ,&nbsp;Ting Chen","doi":"10.1016/j.pharmthera.2025.108801","DOIUrl":null,"url":null,"abstract":"<div><div>Cardiovascular diseases (CVDs) are among the leading causes of death globally and pose a significant threat to public health. Factors such as prolonged high cholesterol levels, diabetes, smoking, unhealthy diet, and genetic predisposition could contribute to the occurrence and development of CVDs. Common CVDs include hypertension (HTN), atherosclerosis (AS), myocardial infarction (MI), myocardial ischemia-reperfusion injury (MIRI), heart failure (HF) and arrhythmia. Estrogen is recognized for its cardiovascular protective effects, resulting in lower incidence and mortality rates of CVDs in premenopausal women compared to men. The G protein-coupled estrogen receptor (GPER), a G protein-coupled receptor with a seven-transmembrane structure, exhibits unique structural characteristics and widespread tissue distribution. GPER activates intracellular signaling pathways through its interaction with G proteins, mediating estrogen's biological effects and participating in the regulation of cardiovascular function, metabolic balance, and nervous system. Although recent research has highlighted the significant role of GPER in the cardiovascular system, its specific mechanisms remain unclear. Therefore, this review summarizes the latest research on GPER in CVDs, including its fundamental characteristics, physiological functions in the cardiovascular system, and its roles and potential therapeutic applications in common CVDs such as HTN, AS, MI, MIRI, HF and arrhythmia. Exploring GPER's positive effects on cardiovascular health will provide new strategies and research directions for the treatment of CVDs.</div></div>","PeriodicalId":402,"journal":{"name":"Pharmacology & Therapeutics","volume":"267 ","pages":"Article 108801"},"PeriodicalIF":12.0000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmacology & Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0163725825000130","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Cardiovascular diseases (CVDs) are among the leading causes of death globally and pose a significant threat to public health. Factors such as prolonged high cholesterol levels, diabetes, smoking, unhealthy diet, and genetic predisposition could contribute to the occurrence and development of CVDs. Common CVDs include hypertension (HTN), atherosclerosis (AS), myocardial infarction (MI), myocardial ischemia-reperfusion injury (MIRI), heart failure (HF) and arrhythmia. Estrogen is recognized for its cardiovascular protective effects, resulting in lower incidence and mortality rates of CVDs in premenopausal women compared to men. The G protein-coupled estrogen receptor (GPER), a G protein-coupled receptor with a seven-transmembrane structure, exhibits unique structural characteristics and widespread tissue distribution. GPER activates intracellular signaling pathways through its interaction with G proteins, mediating estrogen's biological effects and participating in the regulation of cardiovascular function, metabolic balance, and nervous system. Although recent research has highlighted the significant role of GPER in the cardiovascular system, its specific mechanisms remain unclear. Therefore, this review summarizes the latest research on GPER in CVDs, including its fundamental characteristics, physiological functions in the cardiovascular system, and its roles and potential therapeutic applications in common CVDs such as HTN, AS, MI, MIRI, HF and arrhythmia. Exploring GPER's positive effects on cardiovascular health will provide new strategies and research directions for the treatment of CVDs.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
23.00
自引率
0.70%
发文量
222
审稿时长
90 days
期刊介绍: Pharmacology & Therapeutics, in its 20th year, delivers lucid, critical, and authoritative reviews on current pharmacological topics.Articles, commissioned by the editor, follow specific author instructions.This journal maintains its scientific excellence and ranks among the top 10 most cited journals in pharmacology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信