High-performance silk fibroin/hyaluronic acid interpenetrating network hydrogel microneedles for diabetes management.

IF 7.7 1区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Jiahui Hua, Renyan Huang, Meng Yu, Renchuan You, Lu Wang, Shuqin Yan, Ying Huang, Qiang Zhang
{"title":"High-performance silk fibroin/hyaluronic acid interpenetrating network hydrogel microneedles for diabetes management.","authors":"Jiahui Hua, Renyan Huang, Meng Yu, Renchuan You, Lu Wang, Shuqin Yan, Ying Huang, Qiang Zhang","doi":"10.1016/j.ijbiomac.2025.140357","DOIUrl":null,"url":null,"abstract":"<p><p>Hydrogel microneedles (MNs) gained more attentions for diabetes treatments owing to their biocompatibility and versatility. However, the inherent fragility and instability of hydrogels pose limitations on their efficacy in biomedical applications. To overcome this limitation, we developed interpenetrating network hydrogels (IPNs) by incorporating silk fibroin (SF) and methacrylated hyaluronic acid (HAMA). These hydrogels exhibit rapid formation, structural stability, mechanical robustness, and sustainability through photo-crosslinking without the need for crosslinking agents. The hydrogels demonstrated an average formation time of 86 ± 8 s and exhibited favorable elasticity, along with a high compressive stress at break of 70.9 ± 8.2 kPa. Additionally, the extensive proliferation and well-distributed network of human umbilical vein endothelial cells (hUVECs) on the microneedles' (MNs) surface underscored the high cytocompatibility and cell viability of the MNs. In a diabetic mouse model, the MNs were able to maintain normal blood glucose levels for approximately 6 h. The administration of insulin-loaded microneedles to diabetic mice resulted in glucose tolerance levels comparable to those of non-diabetic mice, indicating the efficacy of microneedle therapy in improving the glycemic condition of diabetic subjects. These hydrogel MNs possess a stable structure, can be rapidly fabricated, are sustainable, and hold significant potential for the clinical management of patients with diabetes mellitus.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"140357"},"PeriodicalIF":7.7000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.ijbiomac.2025.140357","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/29 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Hydrogel microneedles (MNs) gained more attentions for diabetes treatments owing to their biocompatibility and versatility. However, the inherent fragility and instability of hydrogels pose limitations on their efficacy in biomedical applications. To overcome this limitation, we developed interpenetrating network hydrogels (IPNs) by incorporating silk fibroin (SF) and methacrylated hyaluronic acid (HAMA). These hydrogels exhibit rapid formation, structural stability, mechanical robustness, and sustainability through photo-crosslinking without the need for crosslinking agents. The hydrogels demonstrated an average formation time of 86 ± 8 s and exhibited favorable elasticity, along with a high compressive stress at break of 70.9 ± 8.2 kPa. Additionally, the extensive proliferation and well-distributed network of human umbilical vein endothelial cells (hUVECs) on the microneedles' (MNs) surface underscored the high cytocompatibility and cell viability of the MNs. In a diabetic mouse model, the MNs were able to maintain normal blood glucose levels for approximately 6 h. The administration of insulin-loaded microneedles to diabetic mice resulted in glucose tolerance levels comparable to those of non-diabetic mice, indicating the efficacy of microneedle therapy in improving the glycemic condition of diabetic subjects. These hydrogel MNs possess a stable structure, can be rapidly fabricated, are sustainable, and hold significant potential for the clinical management of patients with diabetes mellitus.

求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Biological Macromolecules
International Journal of Biological Macromolecules 生物-生化与分子生物学
CiteScore
13.70
自引率
9.80%
发文量
2728
审稿时长
64 days
期刊介绍: The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.
文献相关原料
公司名称
产品信息
阿拉丁
Paraformaldehyde fix solution (PFA fix solution)
阿拉丁
rhodamine
阿拉丁
Methacrylated hyaluronic acid
阿拉丁
LiBr
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信