Neuroimaging Predictors of Cognitive Resilience against Alzheimer's Disease Pathology.

IF 8.1 1区 医学 Q1 CLINICAL NEUROLOGY
McKenna E Williams, Christine Fennema-Notestine, Tyler R Bell, Shu-Ju Lin, Stephen J Glatt, William S Kremen, Jeremy A Elman
{"title":"Neuroimaging Predictors of Cognitive Resilience against Alzheimer's Disease Pathology.","authors":"McKenna E Williams, Christine Fennema-Notestine, Tyler R Bell, Shu-Ju Lin, Stephen J Glatt, William S Kremen, Jeremy A Elman","doi":"10.1002/ana.27186","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Some individuals demonstrate greater cognitive resilience-the ability to maintain cognitive performance despite adverse brain-related changes-through as yet unknown mechanisms. We examined whether cortical thickness in several brain regions confers resilience against cognitive decline in amyloid-positive adults by moderating the effects of thinner cortex in Alzheimer's disease (AD)-related brain regions and of higher levels of tau.</p><p><strong>Methods: </strong>Amyloid-positive participants from the Alzheimer's Disease Neuroimaging Initiative with relevant imaging data were included (n = 160, observations = 473). Risk factors included an AD brain signature and cerebrospinal fluid phosphorylated tau. Cognitive measures were episodic memory and executive function composites. Mixed effects models tested whether region-specific cortical thickness moderated relationships between markers of AD risk and memory or executive function.</p><p><strong>Results: </strong>Cross-sectionally, thicker cortex in 8 regions minimized the negative impact of thinner cortex/smaller volume in AD signature regions on executive function. Longitudinally, higher baseline thickness in a composite of these 8 regions predicted less memory decline (p = 0.007) and weakened negative effects of phosphorylated tau on memory decline (p = 0.014), independent of baseline cognition and risk markers.</p><p><strong>Interpretation: </strong>We identified 8 cortical regions that appear to confer cognitive resilience cross-sectionally and longitudinally in the face of established indicators of AD pathology. Brain regions fostering executive function may enable compensation in later memory performance and confer cognitive resilience against effects of phosphorylated tau and AD-related cortical changes. These \"resilience\" regions suggest the value of focusing on brain regions beyond only those determined to be AD-related and may partially explain variability in AD-related cognitive trajectories. ANN NEUROL 2025.</p>","PeriodicalId":127,"journal":{"name":"Annals of Neurology","volume":" ","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Neurology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/ana.27186","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: Some individuals demonstrate greater cognitive resilience-the ability to maintain cognitive performance despite adverse brain-related changes-through as yet unknown mechanisms. We examined whether cortical thickness in several brain regions confers resilience against cognitive decline in amyloid-positive adults by moderating the effects of thinner cortex in Alzheimer's disease (AD)-related brain regions and of higher levels of tau.

Methods: Amyloid-positive participants from the Alzheimer's Disease Neuroimaging Initiative with relevant imaging data were included (n = 160, observations = 473). Risk factors included an AD brain signature and cerebrospinal fluid phosphorylated tau. Cognitive measures were episodic memory and executive function composites. Mixed effects models tested whether region-specific cortical thickness moderated relationships between markers of AD risk and memory or executive function.

Results: Cross-sectionally, thicker cortex in 8 regions minimized the negative impact of thinner cortex/smaller volume in AD signature regions on executive function. Longitudinally, higher baseline thickness in a composite of these 8 regions predicted less memory decline (p = 0.007) and weakened negative effects of phosphorylated tau on memory decline (p = 0.014), independent of baseline cognition and risk markers.

Interpretation: We identified 8 cortical regions that appear to confer cognitive resilience cross-sectionally and longitudinally in the face of established indicators of AD pathology. Brain regions fostering executive function may enable compensation in later memory performance and confer cognitive resilience against effects of phosphorylated tau and AD-related cortical changes. These "resilience" regions suggest the value of focusing on brain regions beyond only those determined to be AD-related and may partially explain variability in AD-related cognitive trajectories. ANN NEUROL 2025.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Neurology
Annals of Neurology 医学-临床神经学
CiteScore
18.00
自引率
1.80%
发文量
270
审稿时长
3-8 weeks
期刊介绍: Annals of Neurology publishes original articles with potential for high impact in understanding the pathogenesis, clinical and laboratory features, diagnosis, treatment, outcomes and science underlying diseases of the human nervous system. Articles should ideally be of broad interest to the academic neurological community rather than solely to subspecialists in a particular field. Studies involving experimental model system, including those in cell and organ cultures and animals, of direct translational relevance to the understanding of neurological disease are also encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信