{"title":"Fast Reverse Design of 4D-Printed Voxelized Composite Structures Using Deep Learning and Evolutionary Algorithm.","authors":"Mengtao Wang, Zaiyang Liu, Hidemitsu Furukawa, Zhuo Li, Yifei Ge, Yifan Xu, Zhe Qiu, Yang Tian, Zhongkui Wang, Ren Xu, Lin Meng","doi":"10.1002/advs.202407825","DOIUrl":null,"url":null,"abstract":"<p><p>Designing voxelized composite structures via 4D printing involves creating voxel units with distinct material properties that transform in response to stimuli; however, optimally distributing these properties to achieve specific target shapes remains a significant challenge. This study introduces an optimization method combining deep learning (DL) and an evolutionary algorithm, focusing on a solvent-responsive hydrogel as the target material. A sequence-enhanced parallel convolutional neural network is developed and generated a dataset through finite element simulations. This DL model enables high-precision prediction of hydrogel deformation. Furthermore, a progressive evolutionary algorithm (PEA) is proposed by integrating the DL model to construct a DL-PEA framework. This framework supports rapid reverse engineering of the desired shape, and the average design time for specified target shapes is reduced to ≈3.04 s. The present findings illustrate how 4D printing of optimized hydrogel designs can effectively transform in response to environmental stimuli. This work provides a new perspective on the application of hydrogels in 4D printing and presents an efficient tool for optimizing 4D-printed voxelized composite structures.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e2407825"},"PeriodicalIF":14.3000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202407825","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Designing voxelized composite structures via 4D printing involves creating voxel units with distinct material properties that transform in response to stimuli; however, optimally distributing these properties to achieve specific target shapes remains a significant challenge. This study introduces an optimization method combining deep learning (DL) and an evolutionary algorithm, focusing on a solvent-responsive hydrogel as the target material. A sequence-enhanced parallel convolutional neural network is developed and generated a dataset through finite element simulations. This DL model enables high-precision prediction of hydrogel deformation. Furthermore, a progressive evolutionary algorithm (PEA) is proposed by integrating the DL model to construct a DL-PEA framework. This framework supports rapid reverse engineering of the desired shape, and the average design time for specified target shapes is reduced to ≈3.04 s. The present findings illustrate how 4D printing of optimized hydrogel designs can effectively transform in response to environmental stimuli. This work provides a new perspective on the application of hydrogels in 4D printing and presents an efficient tool for optimizing 4D-printed voxelized composite structures.
期刊介绍:
Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.