Incorporating Bone-Derived ECM into Macroporous Microribbon Scaffolds Accelerates Bone Regeneration.

IF 10 2区 医学 Q1 ENGINEERING, BIOMEDICAL
Cassandra Villicana, Ni Su, Andrew Yang, Xinming Tong, Hung Pang Lee, Manish Ayushman, Jeehee Lee, Michelle Tai, Tayne Kim, Fan Yang
{"title":"Incorporating Bone-Derived ECM into Macroporous Microribbon Scaffolds Accelerates Bone Regeneration.","authors":"Cassandra Villicana, Ni Su, Andrew Yang, Xinming Tong, Hung Pang Lee, Manish Ayushman, Jeehee Lee, Michelle Tai, Tayne Kim, Fan Yang","doi":"10.1002/adhm.202402138","DOIUrl":null,"url":null,"abstract":"<p><p>Tissue-derived extracellular matrix (tdECM) hydrogels serve as effective scaffolds for tissue regeneration by promoting a regenerative immune response. While most tdECM hydrogels are nanoporous and tailored for soft tissue, macroporosity is crucial for bone regeneration. Yet, there's a shortage of macroporous ECM-based hydrogels for this purpose. The study aims to address this gap by developing a co-spinning technique to integrate bone-derived ECM (bECM) into gelatin-based, macroporous microribbon (µRB) scaffolds. The effect of varying doses of bECM on scaffold properties was characterized. In vitro studies revealed 15% bECM as optimal for promoting MSC osteogenesis and macrophage (Mφ) polarization. When implanted in a mouse critical-sized cranial bone defect model, 15% bECM with tricalcium phosphate (TCP) microparticles significantly accelerated bone regeneration and vascularization, filling over 55% of the void by week 2. Increasing bECM to 25% enhanced mesenchymal stem cell (MSC) recruitment and decreased M1 Mφ polarization but reduced overall bone formation and vascularization. The findings demonstrate co-spun gelatin/bECM hydrogels as promising macroporous scaffolds for robust endogenous bone regeneration, without the need for exogenous cells or growth factors. While this study focused on bone regeneration, this platform holds the potential for incorporating various tdECM into macroporous scaffolds for diverse tissue regeneration applications.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":" ","pages":"e2402138"},"PeriodicalIF":10.0000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Healthcare Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adhm.202402138","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Tissue-derived extracellular matrix (tdECM) hydrogels serve as effective scaffolds for tissue regeneration by promoting a regenerative immune response. While most tdECM hydrogels are nanoporous and tailored for soft tissue, macroporosity is crucial for bone regeneration. Yet, there's a shortage of macroporous ECM-based hydrogels for this purpose. The study aims to address this gap by developing a co-spinning technique to integrate bone-derived ECM (bECM) into gelatin-based, macroporous microribbon (µRB) scaffolds. The effect of varying doses of bECM on scaffold properties was characterized. In vitro studies revealed 15% bECM as optimal for promoting MSC osteogenesis and macrophage (Mφ) polarization. When implanted in a mouse critical-sized cranial bone defect model, 15% bECM with tricalcium phosphate (TCP) microparticles significantly accelerated bone regeneration and vascularization, filling over 55% of the void by week 2. Increasing bECM to 25% enhanced mesenchymal stem cell (MSC) recruitment and decreased M1 Mφ polarization but reduced overall bone formation and vascularization. The findings demonstrate co-spun gelatin/bECM hydrogels as promising macroporous scaffolds for robust endogenous bone regeneration, without the need for exogenous cells or growth factors. While this study focused on bone regeneration, this platform holds the potential for incorporating various tdECM into macroporous scaffolds for diverse tissue regeneration applications.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Healthcare Materials
Advanced Healthcare Materials 工程技术-生物材料
CiteScore
14.40
自引率
3.00%
发文量
600
审稿时长
1.8 months
期刊介绍: Advanced Healthcare Materials, a distinguished member of the esteemed Advanced portfolio, has been dedicated to disseminating cutting-edge research on materials, devices, and technologies for enhancing human well-being for over ten years. As a comprehensive journal, it encompasses a wide range of disciplines such as biomaterials, biointerfaces, nanomedicine and nanotechnology, tissue engineering, and regenerative medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信