Siderophore-Functionalized Nanodrug for Treating Antibiotic-Resistant Bacteria.

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-02-02 DOI:10.1021/acsnano.4c06501
Siyoung Ha, Jinyeong Kim, Hwi Won Seo, Lina Kim, Yoon-Sun Yi, Sung Eun Seo, Kyung Ho Kim, Soomin Kim, Jai Eun An, Gyeong-Ji Kim, Kyong-Cheol Ko, Sangmi Jun, Choong-Min Ryu, Oh Seok Kwon
{"title":"Siderophore-Functionalized Nanodrug for Treating Antibiotic-Resistant Bacteria.","authors":"Siyoung Ha, Jinyeong Kim, Hwi Won Seo, Lina Kim, Yoon-Sun Yi, Sung Eun Seo, Kyung Ho Kim, Soomin Kim, Jai Eun An, Gyeong-Ji Kim, Kyong-Cheol Ko, Sangmi Jun, Choong-Min Ryu, Oh Seok Kwon","doi":"10.1021/acsnano.4c06501","DOIUrl":null,"url":null,"abstract":"<p><p>The development of nanodrugs targeting multidrug-resistant bacteria, while sparing the beneficial constituents of the microbiome, has emerged as a promising approach to combat disease and curb the rise of antimicrobial resistance. In this investigation, we devised a siderophore-functionalized nanodrug based on a gold nanoparticle construct (AuNP-NSC; Gold nanoparticle_<i>N</i>-heterocyclic_Siderophore_Cyanine7), offering an innovative treatment modality against drug-resistant bacterial pathogens. As a proof of concept, the efficacy of this nanodrug delivery and antimicrobial therapy was evaluated against the notoriously resistant bacterium <i>P. aeruginosa</i>. <i>N</i>-Heterocyclic carbenes (NHCs) exhibit a strong affinity for transition metals, forming highly stable complexes resistant to ligand displacement. The entry of siderophore-conjugated nanodrugs into bacteria is facilitated through specific receptors on the outer membrane. In our study, AuNP-NSC was specifically targeted and imported into resistant Gram-negative <i>P. aeruginosa</i> via binding with ferric iron. Treatment with the developed nanodrug significantly inhibited the proliferation of antibiotic-resistant <i>P. aeruginosa</i>, reducing bacterial counts by more than 95% and mitigating drug resistance. Furthermore, AuNP-NSC markedly diminished <i>P. aeruginosa</i>-induced skin lesions and forestalled systemic organ failure triggered by secondary sepsis in mouse models. These findings underscore the potential of nanodrugs as specialized therapeutic agents for the management of antibiotic-resistant bacterial infections.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":" ","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c06501","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The development of nanodrugs targeting multidrug-resistant bacteria, while sparing the beneficial constituents of the microbiome, has emerged as a promising approach to combat disease and curb the rise of antimicrobial resistance. In this investigation, we devised a siderophore-functionalized nanodrug based on a gold nanoparticle construct (AuNP-NSC; Gold nanoparticle_N-heterocyclic_Siderophore_Cyanine7), offering an innovative treatment modality against drug-resistant bacterial pathogens. As a proof of concept, the efficacy of this nanodrug delivery and antimicrobial therapy was evaluated against the notoriously resistant bacterium P. aeruginosa. N-Heterocyclic carbenes (NHCs) exhibit a strong affinity for transition metals, forming highly stable complexes resistant to ligand displacement. The entry of siderophore-conjugated nanodrugs into bacteria is facilitated through specific receptors on the outer membrane. In our study, AuNP-NSC was specifically targeted and imported into resistant Gram-negative P. aeruginosa via binding with ferric iron. Treatment with the developed nanodrug significantly inhibited the proliferation of antibiotic-resistant P. aeruginosa, reducing bacterial counts by more than 95% and mitigating drug resistance. Furthermore, AuNP-NSC markedly diminished P. aeruginosa-induced skin lesions and forestalled systemic organ failure triggered by secondary sepsis in mouse models. These findings underscore the potential of nanodrugs as specialized therapeutic agents for the management of antibiotic-resistant bacterial infections.

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信