Shuo Wang, Yi Liu, Gaoqiong Deng, Wanjun Long, Hengye Chen, Yuxiu Xiao, Yuanbin She, Haiyan Fu
{"title":"Ligand‐Engineered Hydrophilic Perovskite Enabling Surface Potential‐Driven Anions Exchange for Multicolor Biosensing","authors":"Shuo Wang, Yi Liu, Gaoqiong Deng, Wanjun Long, Hengye Chen, Yuxiu Xiao, Yuanbin She, Haiyan Fu","doi":"10.1002/anie.202501312","DOIUrl":null,"url":null,"abstract":"The difficulty in designing zwitterionic ligands impedes the water‐dispersed CsPbX3 perovskite nanocrystals (NCs) and their application as fast anion exchange (FAE) probes in biosensing. This study proposes a design paradigm for zwitterionic ligands predicated upon revealing the mechanism of the SN2 reaction between unsaturated alkylamines (Cn') and haloalkanoic acids (HAAs). Among them, the C=C bond can enhance the nucleophilicity of Cn' and promote the electrostatic adsorption of HAAs onto Cn', i.e., the geometric preorganization process, thereby initiating the SN2 reaction. Moreover, an appropriate “bridge” length enables HAAs to balance the geometric preorganization process and the Sigma hole intensity of the C‐Br bond. Zwitterionic ligands derived from oleylamine (C18') and 5‐bromovaleric acid (5‐BVA) endow CsPbBr3 NCs with water dispersibility, an almost 100% photoluminescence quantum yield, and enhanced surface potential, facilitating the capture of halide ions and driving the FAE reaction. Using AgI nanoparticles (NPs) as latent anion exchangers, a third FAE strategy is presented for multicolor biosensing. Such a robust biosensing strategy can generate wavelength shift and chromatic difference for biological target molecules, exemplified by H2S, and is ultimately applicable to multicolor assay in biological, environmental and food samples, demonstrating the immense potential of perovskite‐based FAE probes in biosensing.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"30 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202501312","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The difficulty in designing zwitterionic ligands impedes the water‐dispersed CsPbX3 perovskite nanocrystals (NCs) and their application as fast anion exchange (FAE) probes in biosensing. This study proposes a design paradigm for zwitterionic ligands predicated upon revealing the mechanism of the SN2 reaction between unsaturated alkylamines (Cn') and haloalkanoic acids (HAAs). Among them, the C=C bond can enhance the nucleophilicity of Cn' and promote the electrostatic adsorption of HAAs onto Cn', i.e., the geometric preorganization process, thereby initiating the SN2 reaction. Moreover, an appropriate “bridge” length enables HAAs to balance the geometric preorganization process and the Sigma hole intensity of the C‐Br bond. Zwitterionic ligands derived from oleylamine (C18') and 5‐bromovaleric acid (5‐BVA) endow CsPbBr3 NCs with water dispersibility, an almost 100% photoluminescence quantum yield, and enhanced surface potential, facilitating the capture of halide ions and driving the FAE reaction. Using AgI nanoparticles (NPs) as latent anion exchangers, a third FAE strategy is presented for multicolor biosensing. Such a robust biosensing strategy can generate wavelength shift and chromatic difference for biological target molecules, exemplified by H2S, and is ultimately applicable to multicolor assay in biological, environmental and food samples, demonstrating the immense potential of perovskite‐based FAE probes in biosensing.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.