{"title":"Artificial Intelligence (AI)-driven approach to climate action and sustainable development","authors":"Haein Cho, Emmanuel Ackom","doi":"10.1038/s41467-024-53956-1","DOIUrl":null,"url":null,"abstract":"<p>Countries have pledged commitment to the 2030 Sustainable Development Goal (SDGs) and the Paris Agreement to combat climate change. To maximize synergies between SDGs and climate actions (CAs), we evaluate the alignment of national commitment to SDGs and emissions reduction targets by comparing action plans embodied in Voluntary National Review (VNR) reports and the Nationally Determined Contributions (NDCs) across 67 countries. An Artificial Intelligence (AI)-based approach is proposed in this study to explore the interconnectedness by applying machine learning classifier and natural language processing. Middle- and low-income countries with high emissions tend to have low NDC targets and contain similar information in VNR reports. High-income countries show less alignment between their NDCs and VNRs. The economic status of countries is found to be connected to their climate actions and SDGs alignment. Here, we demonstrate utility and promise in using AI techniques to unravel interactions between CA and SDG.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"122 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-53956-1","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Countries have pledged commitment to the 2030 Sustainable Development Goal (SDGs) and the Paris Agreement to combat climate change. To maximize synergies between SDGs and climate actions (CAs), we evaluate the alignment of national commitment to SDGs and emissions reduction targets by comparing action plans embodied in Voluntary National Review (VNR) reports and the Nationally Determined Contributions (NDCs) across 67 countries. An Artificial Intelligence (AI)-based approach is proposed in this study to explore the interconnectedness by applying machine learning classifier and natural language processing. Middle- and low-income countries with high emissions tend to have low NDC targets and contain similar information in VNR reports. High-income countries show less alignment between their NDCs and VNRs. The economic status of countries is found to be connected to their climate actions and SDGs alignment. Here, we demonstrate utility and promise in using AI techniques to unravel interactions between CA and SDG.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.