Radiation-induced impacts on mitochondrial DNA and the transgenerational genomic instability

IF 10.3 1区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Ryosuke Seino, Haruka Kubo, Kai Nishikubo, Hisanori Fukunaga
{"title":"Radiation-induced impacts on mitochondrial DNA and the transgenerational genomic instability","authors":"Ryosuke Seino, Haruka Kubo, Kai Nishikubo, Hisanori Fukunaga","doi":"10.1016/j.envint.2025.109315","DOIUrl":null,"url":null,"abstract":"<h3>Background</h3>Mitochondrial genomes are dynamically evolving and are shaped by somatic mutation and selection throughout the female germline. In this study, we investigated the radiation-induced impacts on mitochondrial DNA <em>in vitro</em> and <em>in vivo</em>, as well as the transgenerational inheritance.<h3>Methods</h3>Human cervical cancer HeLa cells and telomerase-immortalized normal fibroblast BJ1-hTERT cells were exposed to X-rays at 0.5–8 Gy. Also, we exposed 8-week-old female C57BL/6N mice to a single whole-body dose of 2 Gy of X-rays and mated them with healthy males 1 day after irradiation. We extracted DNA from the irradiated cells, female mice, and the 2-week-old pups, then examined the mitochondrial DNA copy numbers (mtDNAcns) and radiation-induced damage by real-time quantitative PCR.<h3>Results</h3>The mtDNAcn levels in cells increased and the intact copy ratios decreased 24 h after irradiation, resulting in the delayed shift of heteroplasmy. Also, the peripheral blood-derived mtDNAcn levels in irradiated females increased 1 day after irradiation and the intact copy rates decreased, supporting the results <em>in vitro</em>. Furthermore, whole blood-derived mtDNAcn levels decreased in 2-week-old pups born from irradiated mothers, indicating the mitochondrial genomic instability.<h3>Discussion</h3>We found the delayed induction of mtDNA damage in human cancer and noncancerous cells after irradiation, as well as the same trend in mice. Furthermore, to our knowledge, this is first to demonstrate the hereditary effects of radiation on the regulation of mitochondrial genome. These provide novel insights into the significance of radiation protection and preventive medicine for not only pre-pregnancy females but also the next generation.","PeriodicalId":308,"journal":{"name":"Environment International","volume":"60 1","pages":""},"PeriodicalIF":10.3000,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environment International","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.envint.2025.109315","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Mitochondrial genomes are dynamically evolving and are shaped by somatic mutation and selection throughout the female germline. In this study, we investigated the radiation-induced impacts on mitochondrial DNA in vitro and in vivo, as well as the transgenerational inheritance.

Methods

Human cervical cancer HeLa cells and telomerase-immortalized normal fibroblast BJ1-hTERT cells were exposed to X-rays at 0.5–8 Gy. Also, we exposed 8-week-old female C57BL/6N mice to a single whole-body dose of 2 Gy of X-rays and mated them with healthy males 1 day after irradiation. We extracted DNA from the irradiated cells, female mice, and the 2-week-old pups, then examined the mitochondrial DNA copy numbers (mtDNAcns) and radiation-induced damage by real-time quantitative PCR.

Results

The mtDNAcn levels in cells increased and the intact copy ratios decreased 24 h after irradiation, resulting in the delayed shift of heteroplasmy. Also, the peripheral blood-derived mtDNAcn levels in irradiated females increased 1 day after irradiation and the intact copy rates decreased, supporting the results in vitro. Furthermore, whole blood-derived mtDNAcn levels decreased in 2-week-old pups born from irradiated mothers, indicating the mitochondrial genomic instability.

Discussion

We found the delayed induction of mtDNA damage in human cancer and noncancerous cells after irradiation, as well as the same trend in mice. Furthermore, to our knowledge, this is first to demonstrate the hereditary effects of radiation on the regulation of mitochondrial genome. These provide novel insights into the significance of radiation protection and preventive medicine for not only pre-pregnancy females but also the next generation.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Environment International
Environment International 环境科学-环境科学
CiteScore
21.90
自引率
3.40%
发文量
734
审稿时长
2.8 months
期刊介绍: Environmental Health publishes manuscripts focusing on critical aspects of environmental and occupational medicine, including studies in toxicology and epidemiology, to illuminate the human health implications of exposure to environmental hazards. The journal adopts an open-access model and practices open peer review. It caters to scientists and practitioners across all environmental science domains, directly or indirectly impacting human health and well-being. With a commitment to enhancing the prevention of environmentally-related health risks, Environmental Health serves as a public health journal for the community and scientists engaged in matters of public health significance concerning the environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信