All-natural charge gradient interface for sustainable seawater zinc batteries

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Wenjie Fan, Chunliu Zhu, Xingjie Wang, Huanlei Wang, Yue Zhu, Jingwei Chen, Weiqian Tian, Jingyi Wu, Guihua Yu
{"title":"All-natural charge gradient interface for sustainable seawater zinc batteries","authors":"Wenjie Fan, Chunliu Zhu, Xingjie Wang, Huanlei Wang, Yue Zhu, Jingwei Chen, Weiqian Tian, Jingyi Wu, Guihua Yu","doi":"10.1038/s41467-025-56519-0","DOIUrl":null,"url":null,"abstract":"<p>Paring seawater electrolyte with zinc metal electrode has emerged as one of the most sustainable alternative solutions for offshore stationary energy storages owing to the intrinsic safety, extremely low cost, and unlimited water source. However, it remains a substantial challenge to stabilize zinc metal negative electrode in seawater electrolyte, given the presence of chloride ions and complex cations in seawater. Here, we reveal that chloride pitting initiates negative electrode corrosion and aggravates dendritic deposition, causing rapid battery failure. We then report a charge gradient negative electrode interface design that eliminates chloride-induced corrosion and enables a sustainable zinc plating/stripping performance beyond 1300 h in natural seawater electrolyte at 1 mA cm<sup>-2</sup>/1 mAh cm<sup>-2</sup>. The gradually strengthened negative charges formed via diffusion-controlled electrostatic complexation of biomass-derived polysaccharides serve to repel the unfavorable accumulation of chloride ions while simultaneously accelerating the diffusion of zinc ions. The seawater-based Zn | |NaV<sub>3</sub>O<sub>8</sub>·7H<sub>2</sub>O cell delivers an initial areal discharge capacity of 5 mAh cm<sup>-2</sup> and operates over 500 cycles at 500 mA g<sup>-1</sup>.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"18 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-56519-0","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Paring seawater electrolyte with zinc metal electrode has emerged as one of the most sustainable alternative solutions for offshore stationary energy storages owing to the intrinsic safety, extremely low cost, and unlimited water source. However, it remains a substantial challenge to stabilize zinc metal negative electrode in seawater electrolyte, given the presence of chloride ions and complex cations in seawater. Here, we reveal that chloride pitting initiates negative electrode corrosion and aggravates dendritic deposition, causing rapid battery failure. We then report a charge gradient negative electrode interface design that eliminates chloride-induced corrosion and enables a sustainable zinc plating/stripping performance beyond 1300 h in natural seawater electrolyte at 1 mA cm-2/1 mAh cm-2. The gradually strengthened negative charges formed via diffusion-controlled electrostatic complexation of biomass-derived polysaccharides serve to repel the unfavorable accumulation of chloride ions while simultaneously accelerating the diffusion of zinc ions. The seawater-based Zn | |NaV3O8·7H2O cell delivers an initial areal discharge capacity of 5 mAh cm-2 and operates over 500 cycles at 500 mA g-1.

Abstract Image

可持续海水锌电池的全天然电荷梯度界面
由于其固有的安全性、极低的成本和无限量的水源,锌金属电极对海水电解质的分离已成为海上固定式储能最可持续的替代方案之一。然而,由于海水中存在氯离子和络合阳离子,锌金属负极在海水电解质中的稳定性仍然是一个重大挑战。在这里,我们发现氯化物点蚀引发负极腐蚀并加剧枝晶沉积,导致电池快速失效。然后,我们报告了一种电荷梯度负极界面设计,该设计消除了氯化物引起的腐蚀,并使天然海水电解质在1 mA cm-2/1 mAh cm-2下的镀锌/剥离性能持续超过1300小时。通过扩散控制的静电络合作用形成的逐渐增强的负电荷有助于排斥氯离子的不利积累,同时加速锌离子的扩散。基于海水的Zn | |NaV3O8·7H2O电池的初始面积放电容量为5 mAh cm-2,在500 mA g-1下可运行500次循环。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
文献相关原料
公司名称
产品信息
阿拉丁
Vanadium pentoxide
阿拉丁
Zinc chloride
阿拉丁
Strontium chloride hexahydrate
阿拉丁
N-methyl-2-pyrrolidone
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信