{"title":"Improved kinetic model for methanol synthesis with Cu/ZnO/Al2O3 catalysts based on an extensive state-of-the-art dataset","authors":"T.N. van Schagen, H. Keestra, D.W.F. Brilman","doi":"10.1016/j.cej.2025.159953","DOIUrl":null,"url":null,"abstract":"The present work introduces a new kinetic model for methanol synthesis using a Cu/ZnO/Al<span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub is=\"true\"><mrow is=\"true\" /><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msub></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"1.509ex\" role=\"img\" style=\"vertical-align: -0.582ex;\" viewbox=\"0 -399.4 453.9 649.8\" width=\"1.054ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"></g><g is=\"true\" transform=\"translate(0,-150)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-32\"></use></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub is=\"true\"><mrow is=\"true\"></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msub></math></span></span><script type=\"math/mml\"><math><msub is=\"true\"><mrow is=\"true\"></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msub></math></script></span>O<span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub is=\"true\"><mrow is=\"true\" /><mrow is=\"true\"><mn is=\"true\">3</mn></mrow></msub></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"1.509ex\" role=\"img\" style=\"vertical-align: -0.582ex;\" viewbox=\"0 -399.4 453.9 649.8\" width=\"1.054ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"></g><g is=\"true\" transform=\"translate(0,-150)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-33\"></use></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub is=\"true\"><mrow is=\"true\"></mrow><mrow is=\"true\"><mn is=\"true\">3</mn></mrow></msub></math></span></span><script type=\"math/mml\"><math><msub is=\"true\"><mrow is=\"true\"></mrow><mrow is=\"true\"><mn is=\"true\">3</mn></mrow></msub></math></script></span> catalyst, a process important for reducing <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub is=\"true\"><mrow is=\"true\"><mi mathvariant=\"normal\" is=\"true\">CO</mi></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msub></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.432ex\" role=\"img\" style=\"vertical-align: -0.582ex;\" viewbox=\"0 -796.9 1954.9 1047.3\" width=\"4.54ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMAIN-43\"></use><use x=\"722\" xlink:href=\"#MJMAIN-4F\" y=\"0\"></use></g></g><g is=\"true\" transform=\"translate(1501,-150)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-32\"></use></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\" mathvariant=\"normal\">CO</mi></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msub></math></span></span><script type=\"math/mml\"><math><msub is=\"true\"><mrow is=\"true\"><mi mathvariant=\"normal\" is=\"true\">CO</mi></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msub></math></script></span> emissions and producing useful chemicals. By incorporating the latest insights from literature on the mechanisms, an extensive many-parameter model was derived from elementary adsorption and reaction steps. The model was checked against experimental data from literature and an extensive state-of-the-art set of data covering a wide range of conditions measured as part of this work. From this comparison, a simpler and yet more accurate model has been developed in comparison with previously reported models in literature. This model demonstrates significant improvements over existing ones, particularly in predicting reaction behavior under varying conditions. However, further work is required to account for the effects of methanol and water in the feed. A state-of-the-art global optimization algorithm, Covariance Matrix Adaptation, was employed, outperforming other tested algorithms. Additionally, careful data pre-processing minimized dataset bias and model parameter cross-correlation, contributing to a robust model. This study offers a more accurate model for designing reactors and could help in reducing risk in scaling up <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub is=\"true\"><mrow is=\"true\"><mi mathvariant=\"normal\" is=\"true\">CO</mi></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msub></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.432ex\" role=\"img\" style=\"vertical-align: -0.582ex;\" viewbox=\"0 -796.9 1954.9 1047.3\" width=\"4.54ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMAIN-43\"></use><use x=\"722\" xlink:href=\"#MJMAIN-4F\" y=\"0\"></use></g></g><g is=\"true\" transform=\"translate(1501,-150)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-32\"></use></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\" mathvariant=\"normal\">CO</mi></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msub></math></span></span><script type=\"math/mml\"><math><msub is=\"true\"><mrow is=\"true\"><mi mathvariant=\"normal\" is=\"true\">CO</mi></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msub></math></script></span>-to-methanol technologies, making them more practical for industrial use.","PeriodicalId":270,"journal":{"name":"Chemical Engineering Journal","volume":"20 1","pages":""},"PeriodicalIF":13.3000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.cej.2025.159953","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The present work introduces a new kinetic model for methanol synthesis using a Cu/ZnO/AlO catalyst, a process important for reducing emissions and producing useful chemicals. By incorporating the latest insights from literature on the mechanisms, an extensive many-parameter model was derived from elementary adsorption and reaction steps. The model was checked against experimental data from literature and an extensive state-of-the-art set of data covering a wide range of conditions measured as part of this work. From this comparison, a simpler and yet more accurate model has been developed in comparison with previously reported models in literature. This model demonstrates significant improvements over existing ones, particularly in predicting reaction behavior under varying conditions. However, further work is required to account for the effects of methanol and water in the feed. A state-of-the-art global optimization algorithm, Covariance Matrix Adaptation, was employed, outperforming other tested algorithms. Additionally, careful data pre-processing minimized dataset bias and model parameter cross-correlation, contributing to a robust model. This study offers a more accurate model for designing reactors and could help in reducing risk in scaling up -to-methanol technologies, making them more practical for industrial use.
期刊介绍:
The Chemical Engineering Journal is an international research journal that invites contributions of original and novel fundamental research. It aims to provide an international platform for presenting original fundamental research, interpretative reviews, and discussions on new developments in chemical engineering. The journal welcomes papers that describe novel theory and its practical application, as well as those that demonstrate the transfer of techniques from other disciplines. It also welcomes reports on carefully conducted experimental work that is soundly interpreted. The main focus of the journal is on original and rigorous research results that have broad significance. The Catalysis section within the Chemical Engineering Journal focuses specifically on Experimental and Theoretical studies in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. These studies have industrial impact on various sectors such as chemicals, energy, materials, foods, healthcare, and environmental protection.