Enhanced Ionic Diffusion via Refined Pillared 1D Channels for Sodium Metal Batteries

IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Ke Zhang, Yanan Zhang, Zhuo Chen, Rui Chen, Chi Shan, Xingxing Zhang, Shun Wang, Zengqi Zhang, Sheng Zhang, Wei Zhou, Wenhuan Huang
{"title":"Enhanced Ionic Diffusion via Refined Pillared 1D Channels for Sodium Metal Batteries","authors":"Ke Zhang,&nbsp;Yanan Zhang,&nbsp;Zhuo Chen,&nbsp;Rui Chen,&nbsp;Chi Shan,&nbsp;Xingxing Zhang,&nbsp;Shun Wang,&nbsp;Zengqi Zhang,&nbsp;Sheng Zhang,&nbsp;Wei Zhou,&nbsp;Wenhuan Huang","doi":"10.1002/adfm.202420572","DOIUrl":null,"url":null,"abstract":"<p>In sodium-metal batteries (SMBs), the tunability of metal-organic frameworks (MOFs) pore structures in electrolytes enhances sodium ion transport and anion selectivity. However, the underlying mechanism of these pore structures, especially on ion transport and anion filtration, Dremains unclear. Herein, two zinc-based azole hybrid frameworks (AHF) featuring pillared 1D channels are synthesized. The refined MOF-based electrolyte, BPDC@PH, exhibits an ionic mobility number of 0.87 and an ionic conductivity of 7.74 × 10<sup>−4</sup> S cm<sup>−1</sup> at 35 °C, with cycling stability exceeding 1000 hours at 1.0 mA cm<sup>−2</sup>, which is comparable to existing MOF-based electrolytes. Density functional theory calculations and molecular dynamics simulations reveal that the enlarged AHF-BPDC channels enhance Na<sup>+</sup> diffusion and TFSI<sup>−</sup> adsorption, with a diffusion coefficient of 5.733 × 10<sup>−10</sup> m<sup>2</sup> s<sup>−1</sup>Time-of-flight secondary ion mass spectrometry (TOF-SIMS) conforms efficient NaTFSI transport and rapid NaF deposition, ensuring 1000-cycle stability and over 99% efficiency. The refined MOFs with pillared 1D channels present a promising strategy for developing advanced ssGPEs for highly efficient SMBs.</p>","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"35 29","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adfm.202420572","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In sodium-metal batteries (SMBs), the tunability of metal-organic frameworks (MOFs) pore structures in electrolytes enhances sodium ion transport and anion selectivity. However, the underlying mechanism of these pore structures, especially on ion transport and anion filtration, Dremains unclear. Herein, two zinc-based azole hybrid frameworks (AHF) featuring pillared 1D channels are synthesized. The refined MOF-based electrolyte, BPDC@PH, exhibits an ionic mobility number of 0.87 and an ionic conductivity of 7.74 × 10−4 S cm−1 at 35 °C, with cycling stability exceeding 1000 hours at 1.0 mA cm−2, which is comparable to existing MOF-based electrolytes. Density functional theory calculations and molecular dynamics simulations reveal that the enlarged AHF-BPDC channels enhance Na+ diffusion and TFSI adsorption, with a diffusion coefficient of 5.733 × 10−10 m2 s−1Time-of-flight secondary ion mass spectrometry (TOF-SIMS) conforms efficient NaTFSI transport and rapid NaF deposition, ensuring 1000-cycle stability and over 99% efficiency. The refined MOFs with pillared 1D channels present a promising strategy for developing advanced ssGPEs for highly efficient SMBs.

Abstract Image

Abstract Image

通过改进柱状1D通道增强离子扩散的钠金属电池
在钠金属电池(smb)中,电解质中金属有机骨架(mof)孔结构的可调性增强了钠离子的传输和阴离子的选择性。然而,这些孔隙结构的潜在机制,特别是离子传输和阴离子过滤的机制尚不清楚。本文合成了两种具有柱状一维通道的锌基唑杂化框架(AHF)。制备的MOF基电解质BPDC@PH在35℃下的离子迁移率为0.87,离子电导率为7.74 × 10−4 S cm−1,在1.0 mA cm−2下的循环稳定性超过1000小时,与现有的MOF基电解质相当。密度泛函数理论计算和分子动力学模拟表明,扩大的AHF - BPDC通道增强了Na+扩散和TFSI -吸附,扩散系数为5.733 × 10−10 m2 s−1,飞行时间二次离子质谱(TOF - SIMS)符合高效的NaTFSI传输和快速的NaF沉积,确保了1000循环的稳定性和99%以上的效率。具有柱状1D通道的精加工mof为开发用于高效中小企业的先进ssgpe提供了一种有前途的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信