Core cooperative metabolism in low-complexity CO2-fixing anaerobic microbiota

Guido Zampieri, Davide Santinello, Matteo Palù, Esteban Orellana, Paola Costantini, Lorenzo Favaro, Stefano Campanaro, Laura Treu
{"title":"Core cooperative metabolism in low-complexity CO2-fixing anaerobic microbiota","authors":"Guido Zampieri, Davide Santinello, Matteo Palù, Esteban Orellana, Paola Costantini, Lorenzo Favaro, Stefano Campanaro, Laura Treu","doi":"10.1093/ismejo/wraf017","DOIUrl":null,"url":null,"abstract":"Biological conversion of carbon dioxide into methane has a crucial role in global carbon cycling and is operated by a specialised set of anaerobic archaea. Although it is known that this conversion is strictly linked with cooperative bacterial activity, such as through syntrophic acetate oxidation, there is also a limited understanding on how this cooperation is regulated and metabolically realised. In this work, we investigate the activity in a microbial community evolved to efficiently convert carbon dioxide into methane and predominantly populated by Methanothermobacter wolfeii. Through multi-omics, biochemical analysis and constraint-based modelling, we identify a potential formate cross-feeding from an uncharacterised Limnochordia species to M. wolfeii, driven by the recently discovered reductive glycine pathway and upregulated when hydrogen and carbon dioxide are limited. The quantitative consistency of this metabolic exchange with experimental data is shown by metagenome-scale metabolic models integrating condition-specific metatranscriptomics, which also indicate a broader three-way interaction involving M. wolfeii, the Limnochordia species, and Sphaerobacter thermophilus. Under limited hydrogen and carbon dioxide, aspartate released by M. wolfeii is fermented by S. thermophilus into acetate, which in turn is convertible into formate by Limnochordia, possibly forming a cooperative loop sustaining hydrogenotrophic methanogenesis. These findings expand our knowledge on the modes of carbon dioxide reduction into methane within natural microbial communities and provide an example of cooperative plasticity surrounding this process.","PeriodicalId":516554,"journal":{"name":"The ISME Journal","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The ISME Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ismejo/wraf017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Biological conversion of carbon dioxide into methane has a crucial role in global carbon cycling and is operated by a specialised set of anaerobic archaea. Although it is known that this conversion is strictly linked with cooperative bacterial activity, such as through syntrophic acetate oxidation, there is also a limited understanding on how this cooperation is regulated and metabolically realised. In this work, we investigate the activity in a microbial community evolved to efficiently convert carbon dioxide into methane and predominantly populated by Methanothermobacter wolfeii. Through multi-omics, biochemical analysis and constraint-based modelling, we identify a potential formate cross-feeding from an uncharacterised Limnochordia species to M. wolfeii, driven by the recently discovered reductive glycine pathway and upregulated when hydrogen and carbon dioxide are limited. The quantitative consistency of this metabolic exchange with experimental data is shown by metagenome-scale metabolic models integrating condition-specific metatranscriptomics, which also indicate a broader three-way interaction involving M. wolfeii, the Limnochordia species, and Sphaerobacter thermophilus. Under limited hydrogen and carbon dioxide, aspartate released by M. wolfeii is fermented by S. thermophilus into acetate, which in turn is convertible into formate by Limnochordia, possibly forming a cooperative loop sustaining hydrogenotrophic methanogenesis. These findings expand our knowledge on the modes of carbon dioxide reduction into methane within natural microbial communities and provide an example of cooperative plasticity surrounding this process.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信