Impact of large-scale structures on fracture network connectivity: Insights into the Vaca Muerta unconventional play, Neuquén basin, Argentina

IF 2.7 3区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS
Clara Correa-Luna , Daniel L. Yagupsky , Jeremías Likerman , Hernán Barcelona
{"title":"Impact of large-scale structures on fracture network connectivity: Insights into the Vaca Muerta unconventional play, Neuquén basin, Argentina","authors":"Clara Correa-Luna ,&nbsp;Daniel L. Yagupsky ,&nbsp;Jeremías Likerman ,&nbsp;Hernán Barcelona","doi":"10.1016/j.tecto.2025.230640","DOIUrl":null,"url":null,"abstract":"<div><div>Understanding natural fracture networks in rock masses is crucial due to their significant impact on mechanical behavior and fluid flow dynamics. Discrete Fracture Network (DFN) models provide a robust framework for representing these networks and assessing their role as pathways for fluid migration. They also allow the study of the relationship between fracturing and large-scale geological features such as faults, lineaments, and fracture corridors, all of which influence fracture-network connectivity. This last feature is critical for defining the geometry of the stimulated rock volume in low-permeability shale oil reservoirs and predicting well interference problems. In this study, 2D DFN models were developed using a dataset that integrates field measurements of fractures with interpretations derived from a georeferenced orthomosaic generated through an Unmanned Aerial Vehicle (UAV) survey. The Mallín de los Caballos site, where the Los Catutos Member within the Vaca Muerta Formation outcrops, was selected as the natural prototype. This carbonate-dominated member provides notable exposures, enabling a detailed survey. Lateral connectivity analyses of the constructed models reveal a poorly connected background system. However, when larger-scale ENE-WSW-oriented structures are introduced, connectivity and resulting anisotropy of permeability increase substantially, transforming the spatial distribution and local fluid flow potential. At the reservoir scale, these structures correspond to subvertical strike-slip faults identified in 3D seismic data of the Neuquén Embayment, though their full characterization is limited by seismic resolution. This work proposes improved parametrization of these structural lineaments identified in the outcropping upper section of the Tordillo Formation. These findings highlight the importance of integrating geological data of various scales to comprehensively understand the behavior of fluid flow in unconventional reservoirs such as the Vaca Muerta Formation.</div></div>","PeriodicalId":22257,"journal":{"name":"Tectonophysics","volume":"898 ","pages":"Article 230640"},"PeriodicalIF":2.7000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tectonophysics","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040195125000265","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding natural fracture networks in rock masses is crucial due to their significant impact on mechanical behavior and fluid flow dynamics. Discrete Fracture Network (DFN) models provide a robust framework for representing these networks and assessing their role as pathways for fluid migration. They also allow the study of the relationship between fracturing and large-scale geological features such as faults, lineaments, and fracture corridors, all of which influence fracture-network connectivity. This last feature is critical for defining the geometry of the stimulated rock volume in low-permeability shale oil reservoirs and predicting well interference problems. In this study, 2D DFN models were developed using a dataset that integrates field measurements of fractures with interpretations derived from a georeferenced orthomosaic generated through an Unmanned Aerial Vehicle (UAV) survey. The Mallín de los Caballos site, where the Los Catutos Member within the Vaca Muerta Formation outcrops, was selected as the natural prototype. This carbonate-dominated member provides notable exposures, enabling a detailed survey. Lateral connectivity analyses of the constructed models reveal a poorly connected background system. However, when larger-scale ENE-WSW-oriented structures are introduced, connectivity and resulting anisotropy of permeability increase substantially, transforming the spatial distribution and local fluid flow potential. At the reservoir scale, these structures correspond to subvertical strike-slip faults identified in 3D seismic data of the Neuquén Embayment, though their full characterization is limited by seismic resolution. This work proposes improved parametrization of these structural lineaments identified in the outcropping upper section of the Tordillo Formation. These findings highlight the importance of integrating geological data of various scales to comprehensively understand the behavior of fluid flow in unconventional reservoirs such as the Vaca Muerta Formation.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Tectonophysics
Tectonophysics 地学-地球化学与地球物理
CiteScore
4.90
自引率
6.90%
发文量
300
审稿时长
6 months
期刊介绍: The prime focus of Tectonophysics will be high-impact original research and reviews in the fields of kinematics, structure, composition, and dynamics of the solid arth at all scales. Tectonophysics particularly encourages submission of papers based on the integration of a multitude of geophysical, geological, geochemical, geodynamic, and geotectonic methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信