{"title":"Limited degradability of dissolved organic carbon, nitrogen, and phosphorus during contrasting seasons in a tropical coastal environment","authors":"Jiangyong Chu, Christian Lønborg, Patrick Martin","doi":"10.1002/lno.12803","DOIUrl":null,"url":null,"abstract":"The biogeochemistry of dissolved organic matter (DOM) is poorly understood in tropical coastal waters. Here, we quantified the biological and photochemical lability of dissolved organic carbon, nitrogen, and phosphorus, in the tropical coastal waters of Singapore. We conducted experiments during the inter‐monsoon, the mid‐southwest monsoon, and the late southwest monsoon seasons, which span the greatest range of biogeochemical conditions found in the area. The DOM lability was quantified as concentration changes during 90‐d biodegradation and 7‐d photoreactor incubations. Overall, DOM showed low lability, even though dissolved organic nitrogen and dissolved organic phosphorus accounted for most of the dissolved nitrogen and phosphorus. In the biodegradation experiments, only 5–15% of dissolved organic carbon, 0–7% of dissolved organic nitrogen, and 8–21% of dissolved organic phosphorus were degraded. The addition of labile dissolved organic carbon, intended to test priming effects and to ensure the microbes were not carbon‐limited, had no measurable impact on the results. During our photochemical experiments only 2–10% of the dissolved organic carbon were degraded, while neither dissolved organic nitrogen nor dissolved organic phosphorus showed consistent photochemical losses. The DOM optical properties (absorbance and fluorescence spectra) showed limited or no changes during the biodegradation experiments but larger declines in the photochemical experiments. Overall, the biodegradation of DOM was highest during the inter‐monsoon, when autochthonous DOM was most dominant, while photolability was greater during the terrestrial DOM‐rich southwest monsoon. Our results illustrate that in some tropical coastal environments, DOM can be fairly resistant to biological and photochemical degradation, and thus does not represent a large stock of potentially available nutrients.","PeriodicalId":18143,"journal":{"name":"Limnology and Oceanography","volume":"10 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Limnology and Oceanography","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1002/lno.12803","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"LIMNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The biogeochemistry of dissolved organic matter (DOM) is poorly understood in tropical coastal waters. Here, we quantified the biological and photochemical lability of dissolved organic carbon, nitrogen, and phosphorus, in the tropical coastal waters of Singapore. We conducted experiments during the inter‐monsoon, the mid‐southwest monsoon, and the late southwest monsoon seasons, which span the greatest range of biogeochemical conditions found in the area. The DOM lability was quantified as concentration changes during 90‐d biodegradation and 7‐d photoreactor incubations. Overall, DOM showed low lability, even though dissolved organic nitrogen and dissolved organic phosphorus accounted for most of the dissolved nitrogen and phosphorus. In the biodegradation experiments, only 5–15% of dissolved organic carbon, 0–7% of dissolved organic nitrogen, and 8–21% of dissolved organic phosphorus were degraded. The addition of labile dissolved organic carbon, intended to test priming effects and to ensure the microbes were not carbon‐limited, had no measurable impact on the results. During our photochemical experiments only 2–10% of the dissolved organic carbon were degraded, while neither dissolved organic nitrogen nor dissolved organic phosphorus showed consistent photochemical losses. The DOM optical properties (absorbance and fluorescence spectra) showed limited or no changes during the biodegradation experiments but larger declines in the photochemical experiments. Overall, the biodegradation of DOM was highest during the inter‐monsoon, when autochthonous DOM was most dominant, while photolability was greater during the terrestrial DOM‐rich southwest monsoon. Our results illustrate that in some tropical coastal environments, DOM can be fairly resistant to biological and photochemical degradation, and thus does not represent a large stock of potentially available nutrients.
期刊介绍:
Limnology and Oceanography (L&O; print ISSN 0024-3590, online ISSN 1939-5590) publishes original articles, including scholarly reviews, about all aspects of limnology and oceanography. The journal''s unifying theme is the understanding of aquatic systems. Submissions are judged on the originality of their data, interpretations, and ideas, and on the degree to which they can be generalized beyond the particular aquatic system examined. Laboratory and modeling studies must demonstrate relevance to field environments; typically this means that they are bolstered by substantial "real-world" data. Few purely theoretical or purely empirical papers are accepted for review.