Host-guest recognition assisting exciton-plasmon resonance energy transfer-modulated photoelectrochemical solution-gated graphene field-effect transistor for paraquat detection

IF 6.9 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Yufeng Zhang , Zhuo Wang , Shengnan Ma , Xinmo Han , Hairui Wang , Jianfeng Wu , Xuelin Zhang , Limin Chang , Jianwei Xie
{"title":"Host-guest recognition assisting exciton-plasmon resonance energy transfer-modulated photoelectrochemical solution-gated graphene field-effect transistor for paraquat detection","authors":"Yufeng Zhang ,&nbsp;Zhuo Wang ,&nbsp;Shengnan Ma ,&nbsp;Xinmo Han ,&nbsp;Hairui Wang ,&nbsp;Jianfeng Wu ,&nbsp;Xuelin Zhang ,&nbsp;Limin Chang ,&nbsp;Jianwei Xie","doi":"10.1016/j.apsusc.2025.162606","DOIUrl":null,"url":null,"abstract":"<div><div>The photoelectrochemical solution-gated graphene field-effect transistor (PEC-SGGT) is an innovative sensor that integrates a photoelectrochemical (PEC) signal generation mechanism within the gate circuit of solution-gated graphene field-effect transistors (SGGT). In this work, we address the challenge of paraquat (PQ) detection by leveraging its symmetric molecular structure and the host–guest encapsulation effect of cyclodextrins, designing a PEC-SGGT sensor modulated by exciton-plasmon resonance energy transfer (EPRT) interactions. The sensor functions through host–guest recognition between PQ and cyclodextrins, resulting in the formation of the structure CdS-CD@PQ@Au-CD), which enables the EPRT effect. The signal induced by the EPRT effect in the PEC gate electrode will modulate the channel current of the PEC-SGGT device, ultimately generating the detection signal for PQ. The results indicate that the sensor achieves an impressive detection limit of 0.07 pM, demonstrating excellent sensitivity and strong resistance to interference across a linear detection range of 0.1 pM to 0.1 μM. This work not only provides an effective method for PQ detection by but also introduces a novel approach to designing PEC-SGGT sensors and understanding their underlying detection mechanisms.</div></div>","PeriodicalId":247,"journal":{"name":"Applied Surface Science","volume":"690 ","pages":"Article 162606"},"PeriodicalIF":6.9000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169433225003204","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The photoelectrochemical solution-gated graphene field-effect transistor (PEC-SGGT) is an innovative sensor that integrates a photoelectrochemical (PEC) signal generation mechanism within the gate circuit of solution-gated graphene field-effect transistors (SGGT). In this work, we address the challenge of paraquat (PQ) detection by leveraging its symmetric molecular structure and the host–guest encapsulation effect of cyclodextrins, designing a PEC-SGGT sensor modulated by exciton-plasmon resonance energy transfer (EPRT) interactions. The sensor functions through host–guest recognition between PQ and cyclodextrins, resulting in the formation of the structure CdS-CD@PQ@Au-CD), which enables the EPRT effect. The signal induced by the EPRT effect in the PEC gate electrode will modulate the channel current of the PEC-SGGT device, ultimately generating the detection signal for PQ. The results indicate that the sensor achieves an impressive detection limit of 0.07 pM, demonstrating excellent sensitivity and strong resistance to interference across a linear detection range of 0.1 pM to 0.1 μM. This work not only provides an effective method for PQ detection by but also introduces a novel approach to designing PEC-SGGT sensors and understanding their underlying detection mechanisms.

Abstract Image

Abstract Image

主客识别辅助激子-等离子体共振能量转移调制的光电化学溶液门控石墨烯场效应晶体管用于百草枯检测
光电化学溶液门控石墨烯场效应晶体管(PEC-SGGT)是一种新型传感器,它将光电化学(PEC)信号产生机制集成在溶液门控石墨烯场效应晶体管(SGGT)的门电路中。在这项工作中,我们利用百草枯(PQ)的对称分子结构和环糊精的主客包封效应,设计了一种由激子-等离子体共振能量转移(EPRT)相互作用调制的PEC-SGGT传感器,解决了百草枯(PQ)检测的挑战。传感器通过PQ和环糊精之间的主客识别起作用,形成CdS-CD@PQ@Au-CD)结构,实现EPRT效应。PEC栅电极中EPRT效应诱导的信号会调制PEC- sggt器件的通道电流,最终产生PQ的检测信号。结果表明,该传感器的检测限为0.07 pM,在0.1 pM至0.1 μM的线性检测范围内具有出色的灵敏度和抗干扰能力。这项工作不仅为PQ检测提供了有效的方法,而且还引入了一种新的方法来设计PEC-SGGT传感器并了解其潜在的检测机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Surface Science
Applied Surface Science 工程技术-材料科学:膜
CiteScore
12.50
自引率
7.50%
发文量
3393
审稿时长
67 days
期刊介绍: Applied Surface Science covers topics contributing to a better understanding of surfaces, interfaces, nanostructures and their applications. The journal is concerned with scientific research on the atomic and molecular level of material properties determined with specific surface analytical techniques and/or computational methods, as well as the processing of such structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信