Chemical Functionalization Meets Enhanced Electrical Conductivity in Iron Oxide Nanoparticles

IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Neha Singh, Anurag Pritam, Jonas Fransson, Prakash Chandra Mondal
{"title":"Chemical Functionalization Meets Enhanced Electrical Conductivity in Iron Oxide Nanoparticles","authors":"Neha Singh,&nbsp;Anurag Pritam,&nbsp;Jonas Fransson,&nbsp;Prakash Chandra Mondal","doi":"10.1002/adfm.202413761","DOIUrl":null,"url":null,"abstract":"<p>An excellent combination of either oxides or metallic nanoparticles (NPs) and functional π-electron rich conjugated molecules can originate a variety of intriguing phenomena convenient for technological applications. Functional π-conjugated aromatic molecules can hold the potential to control the size, shape, morphology, and optoelectronic properties of nanoparticles through the formation of covalent interfaces. Interfacial charge transfer at the nanoparticles−molecules interfaces plays vital roles in modulating photophysical and electrical conductivity properties, which found enormous applications in catalysis, electrical, and magnetism. This work illustrates iron oxide nanoparticles (Fe<sub>3</sub>O<sub>4</sub> NPs) capped with in situ generated aryl radicals for tuning electrical properties. Organic molecules with different functional groups are covalently attached to the surface of Fe<sub>3</sub>O<sub>4</sub> NPs through radical formation. An electrical insulating pristine Fe<sub>3</sub>O<sub>4</sub> NPs turns into semiconductor behavior upon aryl radical functionalization, which is due to the synergistic and efficient intermolecular charge transfer between Fe<sub>3</sub>O<sub>4</sub> NPs of mixed valence metal ions (Fe<sup>2+</sup>, a d<sup>6</sup> electronic system, and Fe<sup>3+</sup>, a d<sup>5</sup> electronic system) and π-electron rich aromatic molecules (donor–acceptor interactions). A theoretical framework strongly supports the experimental findings. These findings on tuning the electrical conductivity of nanoparticles using a small molecule can provide a promising avenue for a wide range of electronic applications.</p>","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"35 12","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adfm.202413761","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

An excellent combination of either oxides or metallic nanoparticles (NPs) and functional π-electron rich conjugated molecules can originate a variety of intriguing phenomena convenient for technological applications. Functional π-conjugated aromatic molecules can hold the potential to control the size, shape, morphology, and optoelectronic properties of nanoparticles through the formation of covalent interfaces. Interfacial charge transfer at the nanoparticles−molecules interfaces plays vital roles in modulating photophysical and electrical conductivity properties, which found enormous applications in catalysis, electrical, and magnetism. This work illustrates iron oxide nanoparticles (Fe3O4 NPs) capped with in situ generated aryl radicals for tuning electrical properties. Organic molecules with different functional groups are covalently attached to the surface of Fe3O4 NPs through radical formation. An electrical insulating pristine Fe3O4 NPs turns into semiconductor behavior upon aryl radical functionalization, which is due to the synergistic and efficient intermolecular charge transfer between Fe3O4 NPs of mixed valence metal ions (Fe2+, a d6 electronic system, and Fe3+, a d5 electronic system) and π-electron rich aromatic molecules (donor–acceptor interactions). A theoretical framework strongly supports the experimental findings. These findings on tuning the electrical conductivity of nanoparticles using a small molecule can provide a promising avenue for a wide range of electronic applications.

Abstract Image

化学功能化满足氧化铁纳米颗粒的增强电导率
氧化物或金属纳米颗粒(NPs)与功能丰富的π电子共轭分子的良好组合可以产生各种有趣的现象,便于技术应用。功能化π共轭芳香分子可以通过形成共价界面来控制纳米颗粒的大小、形状、形态和光电子特性。纳米粒子-分子界面上的电荷转移在调节光物理和电导率特性中起着至关重要的作用,在催化、电学和磁学中有着巨大的应用。这项工作说明了氧化铁纳米颗粒(Fe3O4 NPs)被原位生成的芳基自由基覆盖,以调节电性能。具有不同官能团的有机分子通过自由基形成共价附着在Fe3O4 NPs表面。电绝缘的原始Fe3O4 NPs在芳基官能化后转变为半导体行为,这是由于混合价金属离子(Fe2+, d6电子系统,Fe3+, d5电子系统)和富含π电子的芳香分子(供体-受体相互作用)之间的协同和有效的分子间电荷转移。理论框架有力地支持了实验结果。这些利用小分子调节纳米颗粒电导率的发现为广泛的电子应用提供了一条有前途的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信