Enhanced visible light photocatalytic inactivation of Microcystis aeruginosa using Ag2CO3/WO3 with strong internal electric field: Performance and mechanism

IF 8.1 1区 工程技术 Q1 ENGINEERING, CHEMICAL
Gongduan Fan, Yixin Yao, Chenjian Cai, Banghao Du, Antong Shi, Kai-Qin Xu
{"title":"Enhanced visible light photocatalytic inactivation of Microcystis aeruginosa using Ag2CO3/WO3 with strong internal electric field: Performance and mechanism","authors":"Gongduan Fan, Yixin Yao, Chenjian Cai, Banghao Du, Antong Shi, Kai-Qin Xu","doi":"10.1016/j.seppur.2025.131891","DOIUrl":null,"url":null,"abstract":"Eutrophication-induced algal blooms present serious risks to aquatic ecosystems and human health by crowding out the living space of aquatic plants and animals. In this study, an Ag<sub>2</sub>CO<sub>3</sub>/WO<sub>3</sub> photocatalyst with exceptional optical properties was synthesized using an in situ stirring method. This photocatalyst exhibited remarkable efficacy in the visible light photocatalytic inactivation of Microcystis aeruginosa, achieving nearly 100% algal removal within 180 min. To elucidate the particular effect on algae cell for visible light photocatalytic inactivation, the physiological changes in algal cells were further investigated. Our findings revealed that Ag<sub>2</sub>CO<sub>3</sub>/WO<sub>3</sub> severely impairs membrane permeability, disrupts stability, and interferes with the physiological metabolism of algal cells, leading to the continuous release and subsequent degradation of intra- and extracellular organic matter. Additionally, several reactive radicals, ·OH, ·O<sub>2</sub><sup>−</sup>, <sup>1</sup>O<sub>2</sub> and h<sup>+</sup>, are considered the primary contributors to the inactivation of algal cells during visible-light photocatalytic inactivation. And efficient electron-hole separation in Ag<sub>2</sub>CO<sub>3</sub>/WO<sub>3</sub>, induced by the internal electric field, is a prerequisite for reactive oxygen species (ROSs) generation. Based on these findings, a potential mechanism for the visible light photocatalytic inactivation of M. aeruginosa by Ag<sub>2</sub>CO<sub>3</sub>/WO<sub>3</sub> was proposed. Overall, Ag<sub>2</sub>CO<sub>3</sub>/WO<sub>3</sub> demonstrated exceptional effectiveness in removing M. aeruginosa and held promise for application in managing harmful cyanobacteria blooms in aquatic ecosystems.","PeriodicalId":427,"journal":{"name":"Separation and Purification Technology","volume":"72 1 1","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Separation and Purification Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.seppur.2025.131891","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Eutrophication-induced algal blooms present serious risks to aquatic ecosystems and human health by crowding out the living space of aquatic plants and animals. In this study, an Ag2CO3/WO3 photocatalyst with exceptional optical properties was synthesized using an in situ stirring method. This photocatalyst exhibited remarkable efficacy in the visible light photocatalytic inactivation of Microcystis aeruginosa, achieving nearly 100% algal removal within 180 min. To elucidate the particular effect on algae cell for visible light photocatalytic inactivation, the physiological changes in algal cells were further investigated. Our findings revealed that Ag2CO3/WO3 severely impairs membrane permeability, disrupts stability, and interferes with the physiological metabolism of algal cells, leading to the continuous release and subsequent degradation of intra- and extracellular organic matter. Additionally, several reactive radicals, ·OH, ·O2, 1O2 and h+, are considered the primary contributors to the inactivation of algal cells during visible-light photocatalytic inactivation. And efficient electron-hole separation in Ag2CO3/WO3, induced by the internal electric field, is a prerequisite for reactive oxygen species (ROSs) generation. Based on these findings, a potential mechanism for the visible light photocatalytic inactivation of M. aeruginosa by Ag2CO3/WO3 was proposed. Overall, Ag2CO3/WO3 demonstrated exceptional effectiveness in removing M. aeruginosa and held promise for application in managing harmful cyanobacteria blooms in aquatic ecosystems.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Separation and Purification Technology
Separation and Purification Technology 工程技术-工程:化工
CiteScore
14.00
自引率
12.80%
发文量
2347
审稿时长
43 days
期刊介绍: Separation and Purification Technology is a premier journal committed to sharing innovative methods for separation and purification in chemical and environmental engineering, encompassing both homogeneous solutions and heterogeneous mixtures. Our scope includes the separation and/or purification of liquids, vapors, and gases, as well as carbon capture and separation techniques. However, it's important to note that methods solely intended for analytical purposes are not within the scope of the journal. Additionally, disciplines such as soil science, polymer science, and metallurgy fall outside the purview of Separation and Purification Technology. Join us in advancing the field of separation and purification methods for sustainable solutions in chemical and environmental engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信