Giorgia Palombo, Simon Weir, Davide Michieletto, Yair Augusto Gutiérrez Fosado
{"title":"Topological linking determines elasticity in limited valence networks","authors":"Giorgia Palombo, Simon Weir, Davide Michieletto, Yair Augusto Gutiérrez Fosado","doi":"10.1038/s41563-024-02091-9","DOIUrl":null,"url":null,"abstract":"<p>Understanding the relationship between the microscopic structure and topology of a material and its macroscopic properties is a fundamental challenge across a wide range of systems. Here we investigate the viscoelasticity of DNA nanostar hydrogels—a model system for physical networks with limited valence—by coupling rheology measurements, confocal imaging and molecular dynamics simulations. We discover that these networks display a large degree of interpenetration and that loops within the network are topologically linked, forming a percolating network-within-network structure. Below the overlapping concentration, the fraction of branching points and the pore size determine the high-frequency elasticity of these physical gels. At higher concentrations, we discover that this elastic response is dictated by the abundance of topological links between looped motifs in the gel. Our findings highlight the emergence of ‘topological elasticity’ as a previously overlooked mechanism in generic network-forming liquids and gels and inform the design of topologically controllable material behaviours.</p>","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"20 1","pages":""},"PeriodicalIF":37.2000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41563-024-02091-9","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding the relationship between the microscopic structure and topology of a material and its macroscopic properties is a fundamental challenge across a wide range of systems. Here we investigate the viscoelasticity of DNA nanostar hydrogels—a model system for physical networks with limited valence—by coupling rheology measurements, confocal imaging and molecular dynamics simulations. We discover that these networks display a large degree of interpenetration and that loops within the network are topologically linked, forming a percolating network-within-network structure. Below the overlapping concentration, the fraction of branching points and the pore size determine the high-frequency elasticity of these physical gels. At higher concentrations, we discover that this elastic response is dictated by the abundance of topological links between looped motifs in the gel. Our findings highlight the emergence of ‘topological elasticity’ as a previously overlooked mechanism in generic network-forming liquids and gels and inform the design of topologically controllable material behaviours.
期刊介绍:
Nature Materials is a monthly multi-disciplinary journal aimed at bringing together cutting-edge research across the entire spectrum of materials science and engineering. It covers all applied and fundamental aspects of the synthesis/processing, structure/composition, properties, and performance of materials. The journal recognizes that materials research has an increasing impact on classical disciplines such as physics, chemistry, and biology.
Additionally, Nature Materials provides a forum for the development of a common identity among materials scientists and encourages interdisciplinary collaboration. It takes an integrated and balanced approach to all areas of materials research, fostering the exchange of ideas between scientists involved in different disciplines.
Nature Materials is an invaluable resource for scientists in academia and industry who are active in discovering and developing materials and materials-related concepts. It offers engaging and informative papers of exceptional significance and quality, with the aim of influencing the development of society in the future.