Francesco Andreoli, Charlie-Ray Mann, Alexander A. High, Darrick E. Chang
{"title":"Metalens formed by structured arrays of atomic emitters","authors":"Francesco Andreoli, Charlie-Ray Mann, Alexander A. High, Darrick E. Chang","doi":"10.1515/nanoph-2024-0603","DOIUrl":null,"url":null,"abstract":"Arrays of atomic emitters have proven to be a promising platform to manipulate and engineer optical properties, due to their efficient cooperative response to near-resonant light. Here, we theoretically investigate their use as an efficient metalens. We show that, by spatially tailoring the (subwavelength) lattice constants of three consecutive two-dimensional arrays of identical atomic emitters, one can realize a large transmission coefficient with arbitrary position-dependent phase shift, whose robustness against losses is enhanced by the collective response. To characterize the efficiency of this atomic metalens, we perform large-scale numerical simulations involving a substantial number of atoms (<jats:italic>N</jats:italic> ∼ 5 × 10<jats:sup>5</jats:sup>) that is considerably larger than comparable works. Our results suggest that low-loss, robust optical devices with complex functionalities, ranging from metasurfaces to computer-generated holograms, could be potentially assembled from properly engineered arrays of atomic emitters.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"12 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanophotonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/nanoph-2024-0603","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Arrays of atomic emitters have proven to be a promising platform to manipulate and engineer optical properties, due to their efficient cooperative response to near-resonant light. Here, we theoretically investigate their use as an efficient metalens. We show that, by spatially tailoring the (subwavelength) lattice constants of three consecutive two-dimensional arrays of identical atomic emitters, one can realize a large transmission coefficient with arbitrary position-dependent phase shift, whose robustness against losses is enhanced by the collective response. To characterize the efficiency of this atomic metalens, we perform large-scale numerical simulations involving a substantial number of atoms (N ∼ 5 × 105) that is considerably larger than comparable works. Our results suggest that low-loss, robust optical devices with complex functionalities, ranging from metasurfaces to computer-generated holograms, could be potentially assembled from properly engineered arrays of atomic emitters.
期刊介绍:
Nanophotonics, published in collaboration with Sciencewise, is a prestigious journal that showcases recent international research results, notable advancements in the field, and innovative applications. It is regarded as one of the leading publications in the realm of nanophotonics and encompasses a range of article types including research articles, selectively invited reviews, letters, and perspectives.
The journal specifically delves into the study of photon interaction with nano-structures, such as carbon nano-tubes, nano metal particles, nano crystals, semiconductor nano dots, photonic crystals, tissue, and DNA. It offers comprehensive coverage of the most up-to-date discoveries, making it an essential resource for physicists, engineers, and material scientists.