Lymphatic-derived oxysterols promote anti-tumor immunity and response to immunotherapy in melanoma

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Mengzhu Sun, Laure Garnier, Romane Chevalier, Martin Roumain, Chen Wang, Julien Angelillo, Julien Montorfani, Robert Pick, Dale Brighouse, Nadine Fournier, David Tarussio, Stéphanie Tissot, Jean-Marc Lobaccaro, Tatiana V. Petrova, Camilla Jandus, Daniel E. Speiser, Manfred Kopf, Caroline Pot, Christoph Scheiermann, Krisztian Homicsko, Giulio G. Muccioli, Abhishek D. Garg, Stéphanie Hugues
{"title":"Lymphatic-derived oxysterols promote anti-tumor immunity and response to immunotherapy in melanoma","authors":"Mengzhu Sun, Laure Garnier, Romane Chevalier, Martin Roumain, Chen Wang, Julien Angelillo, Julien Montorfani, Robert Pick, Dale Brighouse, Nadine Fournier, David Tarussio, Stéphanie Tissot, Jean-Marc Lobaccaro, Tatiana V. Petrova, Camilla Jandus, Daniel E. Speiser, Manfred Kopf, Caroline Pot, Christoph Scheiermann, Krisztian Homicsko, Giulio G. Muccioli, Abhishek D. Garg, Stéphanie Hugues","doi":"10.1038/s41467-025-55969-w","DOIUrl":null,"url":null,"abstract":"<p>In melanoma, lymphangiogenesis correlates with metastasis and poor prognosis and promotes immunosuppression. However, it also potentiates immunotherapy by supporting immune cell trafficking. We show in a lymphangiogenic murine melanoma that lymphatic endothelial cells (LECs) upregulate the enzyme Ch25h, which catalyzes the formation of 25-hydroxycholesterol (25-HC) from cholesterol and plays important roles in lipid metabolism, gene regulation, and immune activation. We identify a role for LECs as a source of extracellular 25-HC in tumors inhibiting PPAR-γ in intra-tumoral macrophages and monocytes, preventing their immunosuppressive function and instead promoting their conversion into proinflammatory myeloid cells that support effector T cell functions. In human melanoma, LECs also upregulate Ch25h, and its expression correlates with the lymphatic vessel signature, infiltration of pro-inflammatory macrophages, better patient survival, and better response to immunotherapy. We identify here in mechanistic detail an important LEC function that supports anti-tumor immunity, which can be therapeutically exploited in combination with immunotherapy.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"60 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-55969-w","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

In melanoma, lymphangiogenesis correlates with metastasis and poor prognosis and promotes immunosuppression. However, it also potentiates immunotherapy by supporting immune cell trafficking. We show in a lymphangiogenic murine melanoma that lymphatic endothelial cells (LECs) upregulate the enzyme Ch25h, which catalyzes the formation of 25-hydroxycholesterol (25-HC) from cholesterol and plays important roles in lipid metabolism, gene regulation, and immune activation. We identify a role for LECs as a source of extracellular 25-HC in tumors inhibiting PPAR-γ in intra-tumoral macrophages and monocytes, preventing their immunosuppressive function and instead promoting their conversion into proinflammatory myeloid cells that support effector T cell functions. In human melanoma, LECs also upregulate Ch25h, and its expression correlates with the lymphatic vessel signature, infiltration of pro-inflammatory macrophages, better patient survival, and better response to immunotherapy. We identify here in mechanistic detail an important LEC function that supports anti-tumor immunity, which can be therapeutically exploited in combination with immunotherapy.

Abstract Image

淋巴来源的氧化甾醇促进黑色素瘤的抗肿瘤免疫和免疫治疗反应
在黑色素瘤中,淋巴管生成与转移和不良预后相关,并促进免疫抑制。然而,它也通过支持免疫细胞运输来增强免疫治疗。我们在淋巴管生成的小鼠黑色素瘤中发现,淋巴内皮细胞(LECs)上调酶Ch25h,该酶催化胆固醇形成25-羟基胆固醇(25-HC),并在脂质代谢、基因调控和免疫激活中发挥重要作用。我们发现LECs在肿瘤中作为细胞外25-HC的来源,抑制肿瘤内巨噬细胞和单核细胞中的PPAR-γ,阻止它们的免疫抑制功能,而是促进它们转化为支持效应T细胞功能的促炎髓细胞。在人类黑色素瘤中,LECs也上调Ch25h,其表达与淋巴管特征、促炎巨噬细胞的浸润、更好的患者生存和更好的免疫治疗反应相关。我们在这里确定了一个重要的LEC功能的机制细节,它支持抗肿瘤免疫,可以在治疗上与免疫疗法联合利用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信