Seho Lee, Abdulrahman Alsaadi, Tufail Hassan, Kyungwha Chung, Seongryeong Kim, Aleksandr Barulin, Gyoujin Cho, Chong Min Koo, Inki Kim
{"title":"Ultrafast Photonic PCR with All‐Solution‐Processed Ti3C2Tx‐Based Perfect Absorbers","authors":"Seho Lee, Abdulrahman Alsaadi, Tufail Hassan, Kyungwha Chung, Seongryeong Kim, Aleksandr Barulin, Gyoujin Cho, Chong Min Koo, Inki Kim","doi":"10.1002/lpor.202401600","DOIUrl":null,"url":null,"abstract":"Polymerase chain reaction (PCR) is a critical tool for nucleic acid amplification in molecular diagnosis and genetic analysis. Point‐of‐care (POC) devices are essential for controlling the spread of infectious diseases, but developing cost‐effective chip‐based PCR systems remains a challenge. This study introduces a photonic PCR chip featuring a perfect metamaterial absorber made of Ti<jats:sub>3</jats:sub>C<jats:sub>2</jats:sub>T<jats:sub>x</jats:sub> MXene, silicon dioxide (SiO<jats:sub>2</jats:sub>), and gold nanoparticles (GNP) in a metal‐insulator‐metal (MIM) configuration. Fabricated via a solution‐processing approach, the absorber demonstrates 98% light absorption without the need for expensive lithographic methods. Utilizing a 940 nm infrared (IR) LED, the chip achieves efficient photothermal effects with heating rates of ≈8.3 °C s⁻¹ and cooling rates of ≈7.2 °C s⁻¹ during 30 cycles of λ‐DNA and SARS‐CoV‐2 amplification, transitioning from 65 °C to 95 °C. The low cost and high efficiency of the MXene‐based metamaterial absorbers highlight their potential as key components for ultrafast, energy‐efficient molecular diagnostic chips suitable for on‐site applications.","PeriodicalId":204,"journal":{"name":"Laser & Photonics Reviews","volume":"75 1 1","pages":""},"PeriodicalIF":9.8000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser & Photonics Reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/lpor.202401600","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Polymerase chain reaction (PCR) is a critical tool for nucleic acid amplification in molecular diagnosis and genetic analysis. Point‐of‐care (POC) devices are essential for controlling the spread of infectious diseases, but developing cost‐effective chip‐based PCR systems remains a challenge. This study introduces a photonic PCR chip featuring a perfect metamaterial absorber made of Ti3C2Tx MXene, silicon dioxide (SiO2), and gold nanoparticles (GNP) in a metal‐insulator‐metal (MIM) configuration. Fabricated via a solution‐processing approach, the absorber demonstrates 98% light absorption without the need for expensive lithographic methods. Utilizing a 940 nm infrared (IR) LED, the chip achieves efficient photothermal effects with heating rates of ≈8.3 °C s⁻¹ and cooling rates of ≈7.2 °C s⁻¹ during 30 cycles of λ‐DNA and SARS‐CoV‐2 amplification, transitioning from 65 °C to 95 °C. The low cost and high efficiency of the MXene‐based metamaterial absorbers highlight their potential as key components for ultrafast, energy‐efficient molecular diagnostic chips suitable for on‐site applications.
期刊介绍:
Laser & Photonics Reviews is a reputable journal that publishes high-quality Reviews, original Research Articles, and Perspectives in the field of photonics and optics. It covers both theoretical and experimental aspects, including recent groundbreaking research, specific advancements, and innovative applications.
As evidence of its impact and recognition, Laser & Photonics Reviews boasts a remarkable 2022 Impact Factor of 11.0, according to the Journal Citation Reports from Clarivate Analytics (2023). Moreover, it holds impressive rankings in the InCites Journal Citation Reports: in 2021, it was ranked 6th out of 101 in the field of Optics, 15th out of 161 in Applied Physics, and 12th out of 69 in Condensed Matter Physics.
The journal uses the ISSN numbers 1863-8880 for print and 1863-8899 for online publications.