The enhanced ferroelectric properties of flexible Hf0.85Ce0.15O2 thin films based on in situ stress regulation

IF 12.3 1区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Jinglin Pang, Tianpeng Duan, Min Liao, Limei Jiang, Yichun Zhou, Qiong Yang, Jiajia Liao, Jie Jiang
{"title":"The enhanced ferroelectric properties of flexible Hf0.85Ce0.15O2 thin films based on in situ stress regulation","authors":"Jinglin Pang, Tianpeng Duan, Min Liao, Limei Jiang, Yichun Zhou, Qiong Yang, Jiajia Liao, Jie Jiang","doi":"10.1038/s41528-025-00379-7","DOIUrl":null,"url":null,"abstract":"<p>As the core component of ferroelectric memories, HfO<sub>2</sub>-based ferroelectric thin films play a crucial role in achieving their excellent storage performance. Here, we improved the ferroelectric properties and domain switching properties through in situ stress loading during annealing. The thin films are annealed under different bending states by applying different stress actions, and it is observed that, within a certain range of stress bending, the optimization of the ferroelectric properties of the annealed thin films can reach an extreme value. Specifically, under the influence of a small electric field, the 2<i>P</i><sub>r</sub> values of thin films annealed at +10 and −10 mm increased by 87.1% and 71.1%, respectively, compared with the unbent films. Additionally, these thin films exhibit extremely high domain wall mobility and excellent domain switching capabilities. Once the ferroelectric phase is formed through in situ stress modulation, it remains stable even under multiple service environments.</p>","PeriodicalId":48528,"journal":{"name":"npj Flexible Electronics","volume":"62 1","pages":""},"PeriodicalIF":12.3000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Flexible Electronics","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41528-025-00379-7","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

As the core component of ferroelectric memories, HfO2-based ferroelectric thin films play a crucial role in achieving their excellent storage performance. Here, we improved the ferroelectric properties and domain switching properties through in situ stress loading during annealing. The thin films are annealed under different bending states by applying different stress actions, and it is observed that, within a certain range of stress bending, the optimization of the ferroelectric properties of the annealed thin films can reach an extreme value. Specifically, under the influence of a small electric field, the 2Pr values of thin films annealed at +10 and −10 mm increased by 87.1% and 71.1%, respectively, compared with the unbent films. Additionally, these thin films exhibit extremely high domain wall mobility and excellent domain switching capabilities. Once the ferroelectric phase is formed through in situ stress modulation, it remains stable even under multiple service environments.

Abstract Image

基于原位应力调节的柔性Hf0.85Ce0.15O2薄膜铁电性能的增强
作为铁电存储器的核心部件,hfo2基铁电薄膜对实现其优异的存储性能起着至关重要的作用。在退火过程中,我们通过原位应力加载提高了铁电性能和畴开关性能。通过施加不同的应力作用,在不同的弯曲状态下对薄膜进行退火,观察到在一定的应力弯曲范围内,退火薄膜的铁电性能可以达到一个极值。其中,在小电场作用下,薄膜在+10和−10 mm处退火后的2Pr值比未弯曲薄膜分别提高了87.1%和71.1%。此外,这些薄膜具有极高的畴壁迁移率和优异的畴切换能力。铁电相一旦通过原位应力调制形成,即使在多种使用环境下也能保持稳定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
17.10
自引率
4.80%
发文量
91
审稿时长
6 weeks
期刊介绍: npj Flexible Electronics is an online-only and open access journal, which publishes high-quality papers related to flexible electronic systems, including plastic electronics and emerging materials, new device design and fabrication technologies, and applications.
文献相关原料
公司名称
产品信息
阿拉丁
cerium nitrate hexahydrate
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信