{"title":"Canonical integral models for Shimura varieties of toral type","authors":"Patrick Daniels","doi":"10.2140/ant.2025.19.247","DOIUrl":null,"url":null,"abstract":"<p>We prove the Pappas–Rapoport conjecture on the existence of canonical integral models of Shimura varieties with parahoric level structure in the case where the Shimura variety is defined by a torus. As an important ingredient, we show, using the Bhatt–Scholze theory of prismatic <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>F</mi></math>-crystals, that there is a fully faithful functor from <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi mathvariant=\"bold-script\">𝒢</mi></math>-valued crystalline representations of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi> Gal</mi><mo> <!--FUNCTION APPLICATION--> </mo><!--nolimits--><mo stretchy=\"false\">(</mo><mover accent=\"false\"><mrow><mi>K</mi></mrow><mo accent=\"true\">¯</mo></mover><mo>∕</mo><mi>K</mi><mo stretchy=\"false\">)</mo></math> to <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi mathvariant=\"bold-script\">𝒢</mi></math>-shtukas over <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi> Spd</mi><mo> <!--FUNCTION APPLICATION--> </mo><!--nolimits--><mo stretchy=\"false\">(</mo><msub><mrow><mi mathvariant=\"bold-script\">𝒪</mi></mrow><mrow><mi>K</mi></mrow></msub><mo stretchy=\"false\">)</mo></math>, where <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi mathvariant=\"bold-script\">𝒢</mi></math> is a parahoric group scheme over <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>ℤ</mi></mrow><mrow><mi>p</mi></mrow></msub></math> and <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi mathvariant=\"bold-script\">𝒪</mi></mrow><mrow><mi>K</mi></mrow></msub></math> is the ring of integers in a <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>p</mi></math>-adic field <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>K</mi></math>. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"50 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra & Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/ant.2025.19.247","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We prove the Pappas–Rapoport conjecture on the existence of canonical integral models of Shimura varieties with parahoric level structure in the case where the Shimura variety is defined by a torus. As an important ingredient, we show, using the Bhatt–Scholze theory of prismatic -crystals, that there is a fully faithful functor from -valued crystalline representations of to -shtukas over , where is a parahoric group scheme over and is the ring of integers in a -adic field .
期刊介绍:
ANT’s inclusive definition of algebra and number theory allows it to print research covering a wide range of subtopics, including algebraic and arithmetic geometry. ANT publishes high-quality articles of interest to a broad readership, at a level surpassing all but the top four or five mathematics journals. It exists in both print and electronic forms.
The policies of ANT are set by the editorial board — a group of working mathematicians — rather than by a profit-oriented company, so they will remain friendly to mathematicians'' interests. In particular, they will promote broad dissemination, easy electronic access, and permissive use of content to the greatest extent compatible with survival of the journal. All electronic content becomes free and open access 5 years after publication.