{"title":"Breuil–Mézard conjectures for central division algebras","authors":"Andrea Dotto","doi":"10.2140/ant.2025.19.213","DOIUrl":null,"url":null,"abstract":"<p>We formulate an analogue of the Breuil–Mézard conjecture for the group of units of a central division algebra over a <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>p</mi></math>-adic local field, and we prove that it follows from the conjecture for <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi> GL</mi><mo> <!--FUNCTION APPLICATION--> </mo><!--nolimits--></mrow><mrow><mi>n</mi></mrow></msub></math>. To do so we construct a transfer of inertial types and Serre weights between the maximal compact subgroups of these two groups, in terms of Deligne–Lusztig theory, and we prove its compatibility with mod <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>p</mi></math> reduction, via the inertial Jacquet–Langlands correspondence and certain explicit character formulas. We also prove analogous statements for <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>ℓ</mi></math>-adic coefficients. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"10 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra & Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/ant.2025.19.213","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We formulate an analogue of the Breuil–Mézard conjecture for the group of units of a central division algebra over a -adic local field, and we prove that it follows from the conjecture for . To do so we construct a transfer of inertial types and Serre weights between the maximal compact subgroups of these two groups, in terms of Deligne–Lusztig theory, and we prove its compatibility with mod reduction, via the inertial Jacquet–Langlands correspondence and certain explicit character formulas. We also prove analogous statements for -adic coefficients.
期刊介绍:
ANT’s inclusive definition of algebra and number theory allows it to print research covering a wide range of subtopics, including algebraic and arithmetic geometry. ANT publishes high-quality articles of interest to a broad readership, at a level surpassing all but the top four or five mathematics journals. It exists in both print and electronic forms.
The policies of ANT are set by the editorial board — a group of working mathematicians — rather than by a profit-oriented company, so they will remain friendly to mathematicians'' interests. In particular, they will promote broad dissemination, easy electronic access, and permissive use of content to the greatest extent compatible with survival of the journal. All electronic content becomes free and open access 5 years after publication.