Evaluating Public Exposure to Airborne Particulates from Major Incident Fires: A Back Trajectory Plume Modelling Approach

IF 12.2 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Simon D. Griffiths, Helen M. King, Justine Wilkinson, Frank J. Kelly, Jane A. Entwistle, Michael E. Deary
{"title":"Evaluating Public Exposure to Airborne Particulates from Major Incident Fires: A Back Trajectory Plume Modelling Approach","authors":"Simon D. Griffiths, Helen M. King, Justine Wilkinson, Frank J. Kelly, Jane A. Entwistle, Michael E. Deary","doi":"10.1016/j.jhazmat.2025.137455","DOIUrl":null,"url":null,"abstract":"Major incident fires at industrial facilities, particularly waste sites, pose a significant risk to public health because of the large amounts of hazardous airborne pollutants released into the ambient environment. Monitoring carried out during these fires is limited in spatial resolution, meaning that the full extent of population exposure is difficult to estimate. In this study, we overcome these limitations by using a novel back-trajectory plume modelling approach, applied to PM<sub>10</sub> emission data from a significant tyre fire that occurred in the UK in 2010. This approach allows the calculation of an hourly emission rate that is then used in the forward modelling mode to predict hourly plume concentrations. An analysis of the modelled plume indicated that, as a reasonable worst case, up to 8,000 residents in areas adjacent to the fire may have been exposed to PM<sub>10</sub> concentrations that are deemed hazardous. Moreover, a vulnerability analysis showed that the exposed population had disproportionately poorer health than the national average, thus raising concerns about environmental justice. This work highlights the need to improve regulatory controls for waste sites located near urban areas and for further research on population exposure and the health impacts of major incident fires.","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"207 1","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2025.137455","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Major incident fires at industrial facilities, particularly waste sites, pose a significant risk to public health because of the large amounts of hazardous airborne pollutants released into the ambient environment. Monitoring carried out during these fires is limited in spatial resolution, meaning that the full extent of population exposure is difficult to estimate. In this study, we overcome these limitations by using a novel back-trajectory plume modelling approach, applied to PM10 emission data from a significant tyre fire that occurred in the UK in 2010. This approach allows the calculation of an hourly emission rate that is then used in the forward modelling mode to predict hourly plume concentrations. An analysis of the modelled plume indicated that, as a reasonable worst case, up to 8,000 residents in areas adjacent to the fire may have been exposed to PM10 concentrations that are deemed hazardous. Moreover, a vulnerability analysis showed that the exposed population had disproportionately poorer health than the national average, thus raising concerns about environmental justice. This work highlights the need to improve regulatory controls for waste sites located near urban areas and for further research on population exposure and the health impacts of major incident fires.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Hazardous Materials
Journal of Hazardous Materials 工程技术-工程:环境
CiteScore
25.40
自引率
5.90%
发文量
3059
审稿时长
58 days
期刊介绍: The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信