Large-scale transcript variants dictate neoepitopes for cancer immunotherapy.

IF 12.5 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Shiliang Ji, Feifan Wang, Yongjie Wu, Haoran Hu, Zhen Xing, Jie Zhu, Shi Xu, Tiyun Han, Guilai Liu, Zengding Wu, Caiyi Fei, Lingming Kong, Jiangning Chen, Zhi Ding, Zhen Huang, Junfeng Zhang
{"title":"Large-scale transcript variants dictate neoepitopes for cancer immunotherapy.","authors":"Shiliang Ji, Feifan Wang, Yongjie Wu, Haoran Hu, Zhen Xing, Jie Zhu, Shi Xu, Tiyun Han, Guilai Liu, Zengding Wu, Caiyi Fei, Lingming Kong, Jiangning Chen, Zhi Ding, Zhen Huang, Junfeng Zhang","doi":"10.1126/sciadv.ado5600","DOIUrl":null,"url":null,"abstract":"<p><p>Precise neoepitope discovery is crucial for effective cancer therapeutic vaccines. Conventional approaches struggle to build a repertoire with sufficient immunogenic epitopes. We developed a workflow leveraging full-length ribosome-nascent chain complex-bound mRNA sequencing (FL-RNC seq) and artificial intelligence-based predictive models to accurately identify the neoepitope landscape, especially large-scale transcript variants (LSTVs) missed by short-read sequencing. In the MC38 mouse model, we identified 22 LSTV-derived neoepitopes encoded by a synthesized mRNA lipid nanoparticle vaccine. As a standalone therapy and combined with anti-PD-1 immunotherapy, the vaccine curbed tumor progression, induced robust T cell-specific immunity, and modulated the tumor microenvironment. This underscores the multifaceted potentials of LSTV-derived vaccines. Our approach expands the neoepitope source repertoire, offering a method for discovering personalized cancer vaccines applicable to a broader tumor range. The results highlight the importance of comprehensive neoepitope identification and the promise of LSTV-based vaccines for cancer immunotherapy.</p>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 5","pages":"eado5600"},"PeriodicalIF":12.5000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11784853/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1126/sciadv.ado5600","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Precise neoepitope discovery is crucial for effective cancer therapeutic vaccines. Conventional approaches struggle to build a repertoire with sufficient immunogenic epitopes. We developed a workflow leveraging full-length ribosome-nascent chain complex-bound mRNA sequencing (FL-RNC seq) and artificial intelligence-based predictive models to accurately identify the neoepitope landscape, especially large-scale transcript variants (LSTVs) missed by short-read sequencing. In the MC38 mouse model, we identified 22 LSTV-derived neoepitopes encoded by a synthesized mRNA lipid nanoparticle vaccine. As a standalone therapy and combined with anti-PD-1 immunotherapy, the vaccine curbed tumor progression, induced robust T cell-specific immunity, and modulated the tumor microenvironment. This underscores the multifaceted potentials of LSTV-derived vaccines. Our approach expands the neoepitope source repertoire, offering a method for discovering personalized cancer vaccines applicable to a broader tumor range. The results highlight the importance of comprehensive neoepitope identification and the promise of LSTV-based vaccines for cancer immunotherapy.

大规模转录变异体决定癌症免疫治疗的新表位。
精确的新表位发现对于有效的癌症治疗疫苗至关重要。传统的方法很难建立一个具有足够免疫原性表位的库。我们开发了一种利用全长核糖体-新生链复合物结合的mRNA测序(FL-RNC seq)和基于人工智能的预测模型的工作流程,以准确识别新表位景观,特别是短读测序遗漏的大规模转录本变体(lstv)。在MC38小鼠模型中,我们鉴定了22个lstv衍生的新表位,这些新表位由合成的mRNA脂质纳米颗粒疫苗编码。作为单独治疗和联合抗pd -1免疫治疗,该疫苗抑制肿瘤进展,诱导强大的T细胞特异性免疫,并调节肿瘤微环境。这强调了lstv衍生疫苗的多方面潜力。我们的方法扩展了新表位源库,为发现适用于更广泛肿瘤范围的个性化癌症疫苗提供了一种方法。这些结果强调了全面的新表位鉴定的重要性和基于lstv的癌症免疫治疗疫苗的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信