Dian Li, Yongzhi Huang, Ruixin Luo, Lingjie Zhao, Xiaolin Xiao, Kun Wang, Weibo Yi, Minpeng Xu, Dong Ming
{"title":"Enhancing detection of SSVEPs using discriminant compacted network.","authors":"Dian Li, Yongzhi Huang, Ruixin Luo, Lingjie Zhao, Xiaolin Xiao, Kun Wang, Weibo Yi, Minpeng Xu, Dong Ming","doi":"10.1088/1741-2552/adb0f2","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective</i>. Steady-state visual evoked potential-based brain-computer interfaces (SSVEP-BCIs) have gained significant attention due to their simplicity, high signal to noise ratio and high information transfer rates (ITRs). Currently, accurate detection is a critical issue for enhancing the performance of SSVEP-BCI systems.<i>Approach.</i>This study proposed a novel decoding method called Discriminant Compacted Network (Dis-ComNet), which exploited the advantages of both spatial filtering and deep learning (DL). Specifically, this study enhanced SSVEP features using global template alignment and discriminant spatial pattern, and then designed a compacted temporal-spatio module (CTSM) to extract finer features. The proposed method was evaluated on a self-collected high-frequency dataset, a public Benchmark dataset and a public wearable dataset.<i>Main Results.</i>The results showed that Dis-ComNet significantly outperformed state-of-the-art spatial filtering methods, DL methods, and other fusion methods. Remarkably, Dis-ComNet improved the classification accuracy by 3.9%, 3.5%, 3.2%, 13.3%, 17.4%, 37.5%, and 2.5% when comparing with eTRCA, eTRCA-R, TDCA, DNN, EEGnet, Ensemble-DNN, and TRCA-Net respectively in the high-frequency dataset. The achieved results were 4.7%, 4.6%, 23.6%, 52.5%, 31.7%, and 7.0% higher than those of eTRCA, eTRCA-R, DNN, EEGnet, Ensemble-DNN, and TRCA-Net, respectively, and were comparable to those of TDCA in Benchmark dataset. The accuracy of Dis-ComNet in the wearable dataset was 9.5%, 7.1%, 36.1%, 26.3%, 15.7% and 4.7% higher than eTRCA, eTRCA-R, DNN, EEGnet, Ensemble-DNN, and TRCA-Net respectively, and comparable to TDCA. Besides, our model achieved the ITRs up to 126.0 bits/min, 236.4 bits/min and 103.6 bits/min in the high-frequency, Benchmark and the wearable datasets respectively.<i>Significance.</i>This study develops an effective model for the detection of SSVEPs, facilitating the development of high accuracy SSVEP-BCI systems.</p>","PeriodicalId":94096,"journal":{"name":"Journal of neural engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neural engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1741-2552/adb0f2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Objective. Steady-state visual evoked potential-based brain-computer interfaces (SSVEP-BCIs) have gained significant attention due to their simplicity, high signal to noise ratio and high information transfer rates (ITRs). Currently, accurate detection is a critical issue for enhancing the performance of SSVEP-BCI systems.Approach.This study proposed a novel decoding method called Discriminant Compacted Network (Dis-ComNet), which exploited the advantages of both spatial filtering and deep learning (DL). Specifically, this study enhanced SSVEP features using global template alignment and discriminant spatial pattern, and then designed a compacted temporal-spatio module (CTSM) to extract finer features. The proposed method was evaluated on a self-collected high-frequency dataset, a public Benchmark dataset and a public wearable dataset.Main Results.The results showed that Dis-ComNet significantly outperformed state-of-the-art spatial filtering methods, DL methods, and other fusion methods. Remarkably, Dis-ComNet improved the classification accuracy by 3.9%, 3.5%, 3.2%, 13.3%, 17.4%, 37.5%, and 2.5% when comparing with eTRCA, eTRCA-R, TDCA, DNN, EEGnet, Ensemble-DNN, and TRCA-Net respectively in the high-frequency dataset. The achieved results were 4.7%, 4.6%, 23.6%, 52.5%, 31.7%, and 7.0% higher than those of eTRCA, eTRCA-R, DNN, EEGnet, Ensemble-DNN, and TRCA-Net, respectively, and were comparable to those of TDCA in Benchmark dataset. The accuracy of Dis-ComNet in the wearable dataset was 9.5%, 7.1%, 36.1%, 26.3%, 15.7% and 4.7% higher than eTRCA, eTRCA-R, DNN, EEGnet, Ensemble-DNN, and TRCA-Net respectively, and comparable to TDCA. Besides, our model achieved the ITRs up to 126.0 bits/min, 236.4 bits/min and 103.6 bits/min in the high-frequency, Benchmark and the wearable datasets respectively.Significance.This study develops an effective model for the detection of SSVEPs, facilitating the development of high accuracy SSVEP-BCI systems.