Adapting hybrid density functionals with machine learning.

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Danish Khan, Alastair J A Price, Bing Huang, Maximilian L Ach, O Anatole von Lilienfeld
{"title":"Adapting hybrid density functionals with machine learning.","authors":"Danish Khan, Alastair J A Price, Bing Huang, Maximilian L Ach, O Anatole von Lilienfeld","doi":"10.1126/sciadv.adt7769","DOIUrl":null,"url":null,"abstract":"<p><p>Exact exchange contributions significantly affect electronic states, influencing covalent bond formation and breaking. Hybrid density functional approximations, which average exact exchange admixtures empirically, have achieved success but fall short of high-level quantum chemistry accuracy due to delocalization errors. We propose adaptive hybrid functionals, generating optimal exact exchange admixture ratios on the fly using data-efficient quantum machine learning models with negligible overhead. The adaptive Perdew-Burke-Ernzerhof hybrid density functional (aPBE0) improves energetics, electron densities, and HOMO-LUMO gaps in QM9, QM7b, and GMTKN55 benchmark datasets. A model uncertainty-based constraint reduces the method smoothly to PBE0 in extrapolative regimes, ensuring general applicability with limited training. By tuning exact exchange fractions for different spin states, aPBE0 effectively addresses the spin gap problem in open-shell systems such as carbenes. We also present a revised QM9 (revQM9) dataset with more accurate quantum properties, including stronger covalent binding, larger bandgaps, more localized electron densities, and larger dipole moments.</p>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 5","pages":"eadt7769"},"PeriodicalIF":11.7000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11784814/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1126/sciadv.adt7769","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Exact exchange contributions significantly affect electronic states, influencing covalent bond formation and breaking. Hybrid density functional approximations, which average exact exchange admixtures empirically, have achieved success but fall short of high-level quantum chemistry accuracy due to delocalization errors. We propose adaptive hybrid functionals, generating optimal exact exchange admixture ratios on the fly using data-efficient quantum machine learning models with negligible overhead. The adaptive Perdew-Burke-Ernzerhof hybrid density functional (aPBE0) improves energetics, electron densities, and HOMO-LUMO gaps in QM9, QM7b, and GMTKN55 benchmark datasets. A model uncertainty-based constraint reduces the method smoothly to PBE0 in extrapolative regimes, ensuring general applicability with limited training. By tuning exact exchange fractions for different spin states, aPBE0 effectively addresses the spin gap problem in open-shell systems such as carbenes. We also present a revised QM9 (revQM9) dataset with more accurate quantum properties, including stronger covalent binding, larger bandgaps, more localized electron densities, and larger dipole moments.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信