Effect of steady-state thermal blooming on partially coherent radially polarized beams propagating in the atmosphere.

IF 1.4 3区 物理与天体物理 Q3 OPTICS
Kexin Gu, Yakun Wang, Yonglei Liu, Yahong Chen, Yangjian Cai, Fei Wang
{"title":"Effect of steady-state thermal blooming on partially coherent radially polarized beams propagating in the atmosphere.","authors":"Kexin Gu, Yakun Wang, Yonglei Liu, Yahong Chen, Yangjian Cai, Fei Wang","doi":"10.1364/JOSAA.528173","DOIUrl":null,"url":null,"abstract":"<p><p>We undertake a computational study of the steady-state thermal blooming effect on a special class of partially coherent vector beams, called partially coherent radially polarized (PCRP) beams, propagating through the atmosphere. A computational propagation model that is based on a multi-phase screen method is established to simulate partially coherent vector beams. With the use of this model, the propagation properties of PCRP beams with different initial powers and spatial coherence widths are studied in detail, including average intensity distribution, r.m.s. beam width, and polarization. Our results unveil that PCRP beams can effectively reduce or overcome the negative effects caused by thermal blooming when the initial coherence width falls below a certain threshold. Further, it is shown that the spatial distribution of degree of polarization (DOP) is significantly affected by the thermal blooming during beam propagation, whereas the global DOP (integrating the DOP over a beam's cross-section) is not.</p>","PeriodicalId":17382,"journal":{"name":"Journal of The Optical Society of America A-optics Image Science and Vision","volume":"41 9","pages":"1761-1768"},"PeriodicalIF":1.4000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Optical Society of America A-optics Image Science and Vision","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/JOSAA.528173","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

We undertake a computational study of the steady-state thermal blooming effect on a special class of partially coherent vector beams, called partially coherent radially polarized (PCRP) beams, propagating through the atmosphere. A computational propagation model that is based on a multi-phase screen method is established to simulate partially coherent vector beams. With the use of this model, the propagation properties of PCRP beams with different initial powers and spatial coherence widths are studied in detail, including average intensity distribution, r.m.s. beam width, and polarization. Our results unveil that PCRP beams can effectively reduce or overcome the negative effects caused by thermal blooming when the initial coherence width falls below a certain threshold. Further, it is shown that the spatial distribution of degree of polarization (DOP) is significantly affected by the thermal blooming during beam propagation, whereas the global DOP (integrating the DOP over a beam's cross-section) is not.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.40
自引率
10.50%
发文量
417
审稿时长
3 months
期刊介绍: The Journal of the Optical Society of America A (JOSA A) is devoted to developments in any field of classical optics, image science, and vision. JOSA A includes original peer-reviewed papers on such topics as: * Atmospheric optics * Clinical vision * Coherence and Statistical Optics * Color * Diffraction and gratings * Image processing * Machine vision * Physiological optics * Polarization * Scattering * Signal processing * Thin films * Visual optics Also: j opt soc am a.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信