Modeling refractive error populations by Weibull distribution for the minimum visual correction diopter range in XR systems.

IF 1.4 3区 物理与天体物理 Q3 OPTICS
Chung-Jen Ou
{"title":"Modeling refractive error populations by Weibull distribution for the minimum visual correction diopter range in XR systems.","authors":"Chung-Jen Ou","doi":"10.1364/JOSAA.534409","DOIUrl":null,"url":null,"abstract":"<p><p>The determination of the minimum diopter correction requirements for XR systems is a critical task that necessitates a rigorous, evidence-based approach. This report offers recommendations for XR optical designers to identify the necessary diopter modulation for the target user population. The Weibull distribution is employed to model the refractive error distributions for these groups. The feasibility of this method in addressing high-order visual aberrations has been demonstrated. Comparisons are made among three demonstrated different populations (the United States, Europe, and China) to illustrate the minimum diopter requirements needed to accommodate various percentages of the population. The results of the study reveal that approximately 6 diopters are required to cover 90% of the general populations in both the United States and Europe. In contrast, the younger population in China requires an 8-diopter correction to achieve the same coverage percentage. This study not only underscores the utility of Weibull distribution in modeling refractive errors across different regional populations but also provides a compelling, evidence-based rationale for XR designers regarding the necessity of accommodating optics.</p>","PeriodicalId":17382,"journal":{"name":"Journal of The Optical Society of America A-optics Image Science and Vision","volume":"41 11","pages":"2211-2218"},"PeriodicalIF":1.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Optical Society of America A-optics Image Science and Vision","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/JOSAA.534409","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

The determination of the minimum diopter correction requirements for XR systems is a critical task that necessitates a rigorous, evidence-based approach. This report offers recommendations for XR optical designers to identify the necessary diopter modulation for the target user population. The Weibull distribution is employed to model the refractive error distributions for these groups. The feasibility of this method in addressing high-order visual aberrations has been demonstrated. Comparisons are made among three demonstrated different populations (the United States, Europe, and China) to illustrate the minimum diopter requirements needed to accommodate various percentages of the population. The results of the study reveal that approximately 6 diopters are required to cover 90% of the general populations in both the United States and Europe. In contrast, the younger population in China requires an 8-diopter correction to achieve the same coverage percentage. This study not only underscores the utility of Weibull distribution in modeling refractive errors across different regional populations but also provides a compelling, evidence-based rationale for XR designers regarding the necessity of accommodating optics.

基于威布尔分布的XR系统最小视校正屈光屈光度分布模型。
确定XR系统的最小屈光度校正要求是一项关键任务,需要采用严格的、基于证据的方法。该报告为XR光学设计人员提供了建议,以确定目标用户群体所需的屈光度调制。采用威布尔分布对这些组的屈光误差分布进行建模。这种方法在处理高阶视像差方面的可行性已经被证明。在三个不同的人群(美国、欧洲和中国)之间进行了比较,以说明容纳不同百分比的人口所需的最低屈光度要求。研究结果显示,在美国和欧洲,大约需要6个屈光度才能覆盖90%的普通人群。相比之下,中国的年轻人群需要8屈光度校正才能达到相同的覆盖率。这项研究不仅强调了威布尔分布在不同地区人群的屈光误差建模中的效用,而且还为XR设计师提供了一个令人信服的、基于证据的理论基础,说明了适应光学器件的必要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.40
自引率
10.50%
发文量
417
审稿时长
3 months
期刊介绍: The Journal of the Optical Society of America A (JOSA A) is devoted to developments in any field of classical optics, image science, and vision. JOSA A includes original peer-reviewed papers on such topics as: * Atmospheric optics * Clinical vision * Coherence and Statistical Optics * Color * Diffraction and gratings * Image processing * Machine vision * Physiological optics * Polarization * Scattering * Signal processing * Thin films * Visual optics Also: j opt soc am a.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信