Wide-field large-angle beam splitters based on polarization-insensitive coding metasurfaces.

IF 1.4 3区 物理与天体物理 Q3 OPTICS
Yaokun Shi, Zhe Shen
{"title":"Wide-field large-angle beam splitters based on polarization-insensitive coding metasurfaces.","authors":"Yaokun Shi, Zhe Shen","doi":"10.1364/JOSAA.536922","DOIUrl":null,"url":null,"abstract":"<p><p>Metasurfaces have been used to make various optical devices such as beam splitters because of their excellent capability to control light. The most recent work on metasurface beam splitters focused on realizing one-dimensional beam splitting. Based on generalized Snell's law, we designed the beam splitters using a coding strategy by phase gradient metasurfaces, which can divide vertically incident light into two-dimensional space. Meanwhile, the beam splitters are polarization-insensitive because highly rotationally symmetric nanorods are used as structure units. Using different code groups, especially applying 0 and <i>π</i> binary phases, the proposed beam splitters have various functions such as beam deflection, two-beam splitting, and multi-beam splitting. The flexible design of the coding maps allows the light transmission to cover a full-view field. The maximum splitting angles in two-beam and multi-beam splitters are 35.7° and 28.3°, respectively. All the designed beam splitters have a power efficiency of over 80%. The beam splitters have the advantages of small size, easy integration, large beam splitting angle, wide beam splitting area, and high efficiency. They could be applied to many optical systems, such as multiplexers and interferometers in integrated optical circuits.</p>","PeriodicalId":17382,"journal":{"name":"Journal of The Optical Society of America A-optics Image Science and Vision","volume":"41 12","pages":"2327-2332"},"PeriodicalIF":1.4000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Optical Society of America A-optics Image Science and Vision","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/JOSAA.536922","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Metasurfaces have been used to make various optical devices such as beam splitters because of their excellent capability to control light. The most recent work on metasurface beam splitters focused on realizing one-dimensional beam splitting. Based on generalized Snell's law, we designed the beam splitters using a coding strategy by phase gradient metasurfaces, which can divide vertically incident light into two-dimensional space. Meanwhile, the beam splitters are polarization-insensitive because highly rotationally symmetric nanorods are used as structure units. Using different code groups, especially applying 0 and π binary phases, the proposed beam splitters have various functions such as beam deflection, two-beam splitting, and multi-beam splitting. The flexible design of the coding maps allows the light transmission to cover a full-view field. The maximum splitting angles in two-beam and multi-beam splitters are 35.7° and 28.3°, respectively. All the designed beam splitters have a power efficiency of over 80%. The beam splitters have the advantages of small size, easy integration, large beam splitting angle, wide beam splitting area, and high efficiency. They could be applied to many optical systems, such as multiplexers and interferometers in integrated optical circuits.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.40
自引率
10.50%
发文量
417
审稿时长
3 months
期刊介绍: The Journal of the Optical Society of America A (JOSA A) is devoted to developments in any field of classical optics, image science, and vision. JOSA A includes original peer-reviewed papers on such topics as: * Atmospheric optics * Clinical vision * Coherence and Statistical Optics * Color * Diffraction and gratings * Image processing * Machine vision * Physiological optics * Polarization * Scattering * Signal processing * Thin films * Visual optics Also: j opt soc am a.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信