Achromatic solutions of the color constancy problem: the Helmholtz-Kohlrausch effect explained.

IF 1.4 3区 物理与天体物理 Q3 OPTICS
C van Trigt
{"title":"Achromatic solutions of the color constancy problem: the Helmholtz-Kohlrausch effect explained.","authors":"C van Trigt","doi":"10.1364/JOSAA.523797","DOIUrl":null,"url":null,"abstract":"<p><p>For given tristimulus values <i>X</i>, <i>Y</i>, <i>Z</i> of the object with reflectance <i>ρ</i>(<i>λ</i>) viewed under an illuminant <i>S</i>(<i>λ</i>) with tristimulus values <i>X</i> <sub>0</sub>, <i>Y</i> <sub>0</sub>, <i>Z</i> <sub>0</sub>, an earlier algorithm constructs the smoothest metameric estimate <i>ρ</i> <sub>0</sub>(<i>λ</i>) under <i>S</i>(<i>λ</i>) of <i>ρ</i>(<i>λ</i>), independent of the amplitude of <i>S</i>(<i>λ</i>). It satisfies a physical property of <i>ρ</i>(<i>λ</i>), i.e., 0≤<i>ρ</i> <sub>0</sub>(<i>λ</i>)≤1, on the visual range. The second inequality secures the condition that for no <i>λ</i> the corresponding patch returns more radiation from <i>S</i>(<i>λ</i>) than is incident on it at <i>λ</i>, i.e., <i>ρ</i> <sub>0</sub>(<i>λ</i>) is a fundamental metameric estimate; <i>ρ</i> <sub>0</sub>(<i>λ</i>) and <i>ρ</i>(<i>λ</i>) differ by an estimation error causing perceptual variables assigned to <i>ρ</i> <sub>0</sub>(<i>λ</i>) and <i>ρ</i>(<i>λ</i>) under <i>S</i>(<i>λ</i>) to differ under the universal reference illuminant <i>E</i>(<i>λ</i>)=1 for all <i>λ</i>, tristimulus values <i>X</i> <sub>E</sub>, <i>Y</i> <sub>E</sub>, <i>Z</i> <sub>E</sub>. This color constancy error is suppressed but not nullified by three narrowest nonnegative achromatic response functions <i>A</i> <sub>i</sub>(<i>λ</i>) defined in this paper, replacing the cone sensitivities and invariant under any nonsingular transformation <i>T</i> of the color matching functions, a demand from theoretical physics. They coincide with three functions numerically constructed by Yule apart from an error corrected here. <i>S</i>(<i>λ</i>) unknown to the visual system as a function of <i>λ</i> is replaced by its nonnegative smoothest metameric estimate <i>S</i> <sub>0</sub>(<i>λ</i>) with tristimulus values made available in color rendering calculations, by specular reflection, or determined by any educated guess; <i>ρ</i>(<i>λ</i>) under <i>S</i>(<i>λ</i>) is replaced by its corresponding color <i>R</i> <sub>0</sub>(<i>λ</i>) under <i>S</i> <sub>0</sub>(<i>λ</i>) like <i>ρ</i>(<i>λ</i>) independent of the amplitude of <i>S</i> <sub>0</sub>(<i>λ</i>). The visual system attributes to <i>R</i> <sub>0</sub>(<i>λ</i>)<i>E</i>(<i>λ</i>) one achromatic variable, in the CIE case defined by <i>y</i>(<i>λ</i>)/<i>Y</i> <sub>E</sub>, replaced by the narrowest middle wave function <i>A</i> <sub>2</sub>(<i>λ</i>) normalized such that the integral of <i>A</i> <sub>2</sub>(<i>λ</i>)<i>E</i>(<i>λ</i>) over the visual range equals unity. It defines the achromatic variable <i>ξ</i> <sub>2</sub>, <i>A</i>(<i>λ</i>), and <i>ξ</i> as described in the paper. The associated definition of present luminance explains the Helmholtz-Kohlrausch effect in the last figure of the paper and rejects CIE 1924 luminance that fails to do so. It can be understood without the mathematical details.</p>","PeriodicalId":17382,"journal":{"name":"Journal of The Optical Society of America A-optics Image Science and Vision","volume":"41 11","pages":"2201-2210"},"PeriodicalIF":1.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Optical Society of America A-optics Image Science and Vision","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/JOSAA.523797","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

For given tristimulus values X, Y, Z of the object with reflectance ρ(λ) viewed under an illuminant S(λ) with tristimulus values X 0, Y 0, Z 0, an earlier algorithm constructs the smoothest metameric estimate ρ 0(λ) under S(λ) of ρ(λ), independent of the amplitude of S(λ). It satisfies a physical property of ρ(λ), i.e., 0≤ρ 0(λ)≤1, on the visual range. The second inequality secures the condition that for no λ the corresponding patch returns more radiation from S(λ) than is incident on it at λ, i.e., ρ 0(λ) is a fundamental metameric estimate; ρ 0(λ) and ρ(λ) differ by an estimation error causing perceptual variables assigned to ρ 0(λ) and ρ(λ) under S(λ) to differ under the universal reference illuminant E(λ)=1 for all λ, tristimulus values X E, Y E, Z E. This color constancy error is suppressed but not nullified by three narrowest nonnegative achromatic response functions A i(λ) defined in this paper, replacing the cone sensitivities and invariant under any nonsingular transformation T of the color matching functions, a demand from theoretical physics. They coincide with three functions numerically constructed by Yule apart from an error corrected here. S(λ) unknown to the visual system as a function of λ is replaced by its nonnegative smoothest metameric estimate S 0(λ) with tristimulus values made available in color rendering calculations, by specular reflection, or determined by any educated guess; ρ(λ) under S(λ) is replaced by its corresponding color R 0(λ) under S 0(λ) like ρ(λ) independent of the amplitude of S 0(λ). The visual system attributes to R 0(λ)E(λ) one achromatic variable, in the CIE case defined by y(λ)/Y E, replaced by the narrowest middle wave function A 2(λ) normalized such that the integral of A 2(λ)E(λ) over the visual range equals unity. It defines the achromatic variable ξ 2, A(λ), and ξ as described in the paper. The associated definition of present luminance explains the Helmholtz-Kohlrausch effect in the last figure of the paper and rejects CIE 1924 luminance that fails to do so. It can be understood without the mathematical details.

消色差解的颜色常数问题:亥姆霍兹-柯劳施效应的解释。
对于给定反射率ρ(λ)的物体在三刺激值为x0, y0, z0的光源S(λ)下的三刺激值X, Y, Z,较早的算法构建了ρ(λ)的S(λ)下最光滑的异维估计ρ 0(λ),与S(λ)的幅值无关。它满足ρ(λ)的物理性质,即在视觉范围内0≤ρ 0(λ)≤1。第二个不等式保证了在没有λ的情况下,对应的贴片从S(λ)返回的辐射大于在λ处入射到它上的辐射,即ρ 0(λ)是一个基本的超谱估计;ρ 0(λ)和ρ(λ)因估计误差而不同,导致S(λ)下分配给ρ 0(λ)和ρ(λ)的感知变量在通用参考光源E(λ)=1下对所有λ,三刺激值X E, Y E, Z E =1下不同。本文定义的三个最窄的非负消色差响应函数A i(λ)可以抑制但不能消除这种颜色常数误差,取代了颜色匹配函数在任何非奇异变换T下的锥灵敏度和不变性。理论物理的要求。它们与Yule在数值上构造的三个函数相吻合,除了这里更正了一个错误。作为λ函数的视觉系统未知的S(λ)被其非负的光滑异色估计S 0(λ)取代,其三刺激值在显色计算中可用,通过镜面反射,或由任何有根据的猜测确定;S(λ)下的ρ(λ)被它对应的颜色r0 (λ)替换为S 0(λ)下的ρ(λ)与S 0(λ)的振幅无关。视觉系统将r0 (λ)E(λ)属性为一个消色差变量,在CIE的情况下由y(λ)/ y E定义,由最窄的中波函数a2 (λ)规范化,使得a2 (λ)E(λ)在视觉范围内的积分等于1。它定义了消色差变量ξ 2, A(λ), ξ如文中所述。当前亮度的相关定义解释了论文最后一个图中的亥姆霍兹-柯劳施效应,并拒绝了未能做到这一点的CIE 1924亮度。不用数学细节也能理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.40
自引率
10.50%
发文量
417
审稿时长
3 months
期刊介绍: The Journal of the Optical Society of America A (JOSA A) is devoted to developments in any field of classical optics, image science, and vision. JOSA A includes original peer-reviewed papers on such topics as: * Atmospheric optics * Clinical vision * Coherence and Statistical Optics * Color * Diffraction and gratings * Image processing * Machine vision * Physiological optics * Polarization * Scattering * Signal processing * Thin films * Visual optics Also: j opt soc am a.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信