Electrically-Shielded Coil-Enabled Battery-Free Wireless Sensing for Underwater Environmental Monitoring.

IF 14.3 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Ke Wu, Xia Zhu, Stephan W Anderson, Xin Zhang
{"title":"Electrically-Shielded Coil-Enabled Battery-Free Wireless Sensing for Underwater Environmental Monitoring.","authors":"Ke Wu, Xia Zhu, Stephan W Anderson, Xin Zhang","doi":"10.1002/advs.202414299","DOIUrl":null,"url":null,"abstract":"<p><p>Battery-free wireless sensing in extreme environments, such as conductive solutions, is crucial for long-term, maintenance-free monitoring, eliminating the limitations of battery power and enhancing durability in hard-to-reach areas. However, in such environments, the efficiency of wireless power transfer via radio frequecny (RF) energy harvesting is heavily compromised by signal attenuation and environmental interference, which degrade antenna quality factors and detune resonance frequencies. These limitations create substantial challenges in wirelessly powering miniaturized sensor nodes for underwater environmental monitoring. To overcome these challenges, electrically-shielded coils with coaxially aligned dual-layer conductors are introduced that confine the electric field within the coil's inner capacitance. This configuration mitigates electric field interaction with the surrounding medium, making the coils ideal for use as near-field antennas in aquatic applications. Leveraging these electrically-shielded coils, a metamaterial-enhanced reader antenna was developed and a 3-axis sensor antenna for an near-field communication (NFC)-based system. The system demonstrated improved spectral stability, preserving resonance frequency and maintaining a high-quality factor. This advancement enabled the creation of a battery-free wireless sensing platform for real-time environmental monitoring in underwater environments, even in highly conductive saltwater with salinity levels of up to 3.5%.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e2414299"},"PeriodicalIF":14.3000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202414299","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Battery-free wireless sensing in extreme environments, such as conductive solutions, is crucial for long-term, maintenance-free monitoring, eliminating the limitations of battery power and enhancing durability in hard-to-reach areas. However, in such environments, the efficiency of wireless power transfer via radio frequecny (RF) energy harvesting is heavily compromised by signal attenuation and environmental interference, which degrade antenna quality factors and detune resonance frequencies. These limitations create substantial challenges in wirelessly powering miniaturized sensor nodes for underwater environmental monitoring. To overcome these challenges, electrically-shielded coils with coaxially aligned dual-layer conductors are introduced that confine the electric field within the coil's inner capacitance. This configuration mitigates electric field interaction with the surrounding medium, making the coils ideal for use as near-field antennas in aquatic applications. Leveraging these electrically-shielded coils, a metamaterial-enhanced reader antenna was developed and a 3-axis sensor antenna for an near-field communication (NFC)-based system. The system demonstrated improved spectral stability, preserving resonance frequency and maintaining a high-quality factor. This advancement enabled the creation of a battery-free wireless sensing platform for real-time environmental monitoring in underwater environments, even in highly conductive saltwater with salinity levels of up to 3.5%.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信