Double-formant PCF-SPR refractive index sensor with ultra-high double-peak-shift sensitivity and a wide detection range.

IF 1.4 3区 物理与天体物理 Q3 OPTICS
Xingdi Luo, Jingwei Lv, Wei Liu, Chao Mi, Jianxin Wang, Lin Yang, Paul K Chu, Chao Liu
{"title":"Double-formant PCF-SPR refractive index sensor with ultra-high double-peak-shift sensitivity and a wide detection range.","authors":"Xingdi Luo, Jingwei Lv, Wei Liu, Chao Mi, Jianxin Wang, Lin Yang, Paul K Chu, Chao Liu","doi":"10.1364/JOSAA.530505","DOIUrl":null,"url":null,"abstract":"<p><p>A dual-resonance-peak photonic crystal fiber-surface plasmon resonance (PCF-SPR) refractive index (RI) sensor is designed for different wavelength ranges. The first resonance peak of the sensor is distributed in the wavelength range of 700-2350 nm, while the second peak is distributed in the range of 2350-5550 nm. In addition to detecting analytes using the full spectrum of constraint losses (CLs), it is also possible to use a single resonance peak to achieve the detection of analytes. By systematically optimizing the nanowire diameter, the diameter of the inner and outer layer air hole, the width of the groove, the polishing depth, and the distance from the outer layer air hole to the fiber core, the optimal structure of the sensor is finally determined. In this study, the sensor was studied by numerical analysis, and the characteristics of the sensor were evaluated by wavelength detection technology. The results show that within the RI range of 1.24-1.37, the sensor has a maximum wavelength sensitivity (WS) of 54700 nm/RIU for detecting the RI of analytes. Within the above refractive index range, the regression coefficient <i>R</i> <sup>2</sup> of the dual-peak-resonance wavelength is 0.99993, ensuring the accuracy of the estimated resonance wavelength of the sensor. In addition, the sensor can also use dual-peak-shift sensitivity (DPSS) to detect the refractive index, which is a relatively new sensing technology. The maximum DPSS of the sensor is 95300 nm/RIU. Due to its high sensitivity and unique dual-peak characteristics, this sensor has wide application prospects in medical diagnosis, environmental monitoring, food safety, and other fields.</p>","PeriodicalId":17382,"journal":{"name":"Journal of The Optical Society of America A-optics Image Science and Vision","volume":"41 10","pages":"1873-1883"},"PeriodicalIF":1.4000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Optical Society of America A-optics Image Science and Vision","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/JOSAA.530505","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

A dual-resonance-peak photonic crystal fiber-surface plasmon resonance (PCF-SPR) refractive index (RI) sensor is designed for different wavelength ranges. The first resonance peak of the sensor is distributed in the wavelength range of 700-2350 nm, while the second peak is distributed in the range of 2350-5550 nm. In addition to detecting analytes using the full spectrum of constraint losses (CLs), it is also possible to use a single resonance peak to achieve the detection of analytes. By systematically optimizing the nanowire diameter, the diameter of the inner and outer layer air hole, the width of the groove, the polishing depth, and the distance from the outer layer air hole to the fiber core, the optimal structure of the sensor is finally determined. In this study, the sensor was studied by numerical analysis, and the characteristics of the sensor were evaluated by wavelength detection technology. The results show that within the RI range of 1.24-1.37, the sensor has a maximum wavelength sensitivity (WS) of 54700 nm/RIU for detecting the RI of analytes. Within the above refractive index range, the regression coefficient R 2 of the dual-peak-resonance wavelength is 0.99993, ensuring the accuracy of the estimated resonance wavelength of the sensor. In addition, the sensor can also use dual-peak-shift sensitivity (DPSS) to detect the refractive index, which is a relatively new sensing technology. The maximum DPSS of the sensor is 95300 nm/RIU. Due to its high sensitivity and unique dual-peak characteristics, this sensor has wide application prospects in medical diagnosis, environmental monitoring, food safety, and other fields.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.40
自引率
10.50%
发文量
417
审稿时长
3 months
期刊介绍: The Journal of the Optical Society of America A (JOSA A) is devoted to developments in any field of classical optics, image science, and vision. JOSA A includes original peer-reviewed papers on such topics as: * Atmospheric optics * Clinical vision * Coherence and Statistical Optics * Color * Diffraction and gratings * Image processing * Machine vision * Physiological optics * Polarization * Scattering * Signal processing * Thin films * Visual optics Also: j opt soc am a.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信