Measurement of plasma characteristic parameters of copper foil explosion using interferometry.

IF 1.4 3区 物理与天体物理 Q3 OPTICS
DangJuan Li, Yuyan Lu, Jia Wang, Rongli Guo, Kexuan Wang, Junhong Su, ShenJiang Wu
{"title":"Measurement of plasma characteristic parameters of copper foil explosion using interferometry.","authors":"DangJuan Li, Yuyan Lu, Jia Wang, Rongli Guo, Kexuan Wang, Junhong Su, ShenJiang Wu","doi":"10.1364/JOSAA.539467","DOIUrl":null,"url":null,"abstract":"<p><p>The accurate testing of plasma temperature and electron density and shock wave pressure during an electroburst in a copper foil transducer is critical for the characterization of the detonation performance of its elements. In this paper, the sequence of interferograms during the detonation of a copper foil transducer is captured at a frame rate of 3×10<sup>6</sup> <i>f</i> <i>p</i> <i>s</i> in conjunction with Mach-Zehnder interferometry and high-speed photography, and the results clearly demonstrate the propagation of the shock wave wavefront and plasma. The phase differences disturbed by plasma are extracted using the Fourier transform method, and the refractive index distributions are reconstructed with the Abel algorithm. Subsequently, based on the refractive index models of the shock wave and plasma, the shock wave pressure and plasma temperature and electron density are partitioned and reconstructed. Results show that the maximum shock wave pressure in the detonation of the copper foil transducer element is 1.297 atm, the maximum plasma temperature is 16,280 K, and the maximum plasma electron density is 2.134×10<sup>17</sup> <i>c</i> <i>m</i> <sup>-3</sup>. This study provides a theoretical and technical foundation for the detonation performance testing of pyrotechnic energy-conversion components.</p>","PeriodicalId":17382,"journal":{"name":"Journal of The Optical Society of America A-optics Image Science and Vision","volume":"41 12","pages":"2413-2420"},"PeriodicalIF":1.4000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Optical Society of America A-optics Image Science and Vision","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/JOSAA.539467","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

The accurate testing of plasma temperature and electron density and shock wave pressure during an electroburst in a copper foil transducer is critical for the characterization of the detonation performance of its elements. In this paper, the sequence of interferograms during the detonation of a copper foil transducer is captured at a frame rate of 3×106 f p s in conjunction with Mach-Zehnder interferometry and high-speed photography, and the results clearly demonstrate the propagation of the shock wave wavefront and plasma. The phase differences disturbed by plasma are extracted using the Fourier transform method, and the refractive index distributions are reconstructed with the Abel algorithm. Subsequently, based on the refractive index models of the shock wave and plasma, the shock wave pressure and plasma temperature and electron density are partitioned and reconstructed. Results show that the maximum shock wave pressure in the detonation of the copper foil transducer element is 1.297 atm, the maximum plasma temperature is 16,280 K, and the maximum plasma electron density is 2.134×1017 c m -3. This study provides a theoretical and technical foundation for the detonation performance testing of pyrotechnic energy-conversion components.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.40
自引率
10.50%
发文量
417
审稿时长
3 months
期刊介绍: The Journal of the Optical Society of America A (JOSA A) is devoted to developments in any field of classical optics, image science, and vision. JOSA A includes original peer-reviewed papers on such topics as: * Atmospheric optics * Clinical vision * Coherence and Statistical Optics * Color * Diffraction and gratings * Image processing * Machine vision * Physiological optics * Polarization * Scattering * Signal processing * Thin films * Visual optics Also: j opt soc am a.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信