{"title":"Measurement of plasma characteristic parameters of copper foil explosion using interferometry.","authors":"DangJuan Li, Yuyan Lu, Jia Wang, Rongli Guo, Kexuan Wang, Junhong Su, ShenJiang Wu","doi":"10.1364/JOSAA.539467","DOIUrl":null,"url":null,"abstract":"<p><p>The accurate testing of plasma temperature and electron density and shock wave pressure during an electroburst in a copper foil transducer is critical for the characterization of the detonation performance of its elements. In this paper, the sequence of interferograms during the detonation of a copper foil transducer is captured at a frame rate of 3×10<sup>6</sup> <i>f</i> <i>p</i> <i>s</i> in conjunction with Mach-Zehnder interferometry and high-speed photography, and the results clearly demonstrate the propagation of the shock wave wavefront and plasma. The phase differences disturbed by plasma are extracted using the Fourier transform method, and the refractive index distributions are reconstructed with the Abel algorithm. Subsequently, based on the refractive index models of the shock wave and plasma, the shock wave pressure and plasma temperature and electron density are partitioned and reconstructed. Results show that the maximum shock wave pressure in the detonation of the copper foil transducer element is 1.297 atm, the maximum plasma temperature is 16,280 K, and the maximum plasma electron density is 2.134×10<sup>17</sup> <i>c</i> <i>m</i> <sup>-3</sup>. This study provides a theoretical and technical foundation for the detonation performance testing of pyrotechnic energy-conversion components.</p>","PeriodicalId":17382,"journal":{"name":"Journal of The Optical Society of America A-optics Image Science and Vision","volume":"41 12","pages":"2413-2420"},"PeriodicalIF":1.4000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Optical Society of America A-optics Image Science and Vision","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/JOSAA.539467","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
The accurate testing of plasma temperature and electron density and shock wave pressure during an electroburst in a copper foil transducer is critical for the characterization of the detonation performance of its elements. In this paper, the sequence of interferograms during the detonation of a copper foil transducer is captured at a frame rate of 3×106fps in conjunction with Mach-Zehnder interferometry and high-speed photography, and the results clearly demonstrate the propagation of the shock wave wavefront and plasma. The phase differences disturbed by plasma are extracted using the Fourier transform method, and the refractive index distributions are reconstructed with the Abel algorithm. Subsequently, based on the refractive index models of the shock wave and plasma, the shock wave pressure and plasma temperature and electron density are partitioned and reconstructed. Results show that the maximum shock wave pressure in the detonation of the copper foil transducer element is 1.297 atm, the maximum plasma temperature is 16,280 K, and the maximum plasma electron density is 2.134×1017cm-3. This study provides a theoretical and technical foundation for the detonation performance testing of pyrotechnic energy-conversion components.
在铜箔换能器中,准确测试电爆发时的等离子体温度、电子密度和冲击波压力对于表征其元件的爆轰性能至关重要。本文结合Mach-Zehnder干涉测量和高速摄影技术,以3×106 f p s的帧速率捕获了铜箔换能器爆炸过程中的干涉图序列,结果清楚地显示了激波波前和等离子体的传播。利用傅里叶变换方法提取等离子体扰动的相位差,并用Abel算法重构折射率分布。随后,基于激波和等离子体的折射率模型,对激波压力、等离子体温度和电子密度进行了划分和重构。结果表明:该铜箔换能器元件爆轰时的最大激波压力为1.297 atm,最大等离子体温度为16280 K,最大等离子体电子密度为2.134×1017 c m -3。本研究为火工品能量转换元件爆轰性能测试提供了理论和技术基础。
期刊介绍:
The Journal of the Optical Society of America A (JOSA A) is devoted to developments in any field of classical optics, image science, and vision. JOSA A includes original peer-reviewed papers on such topics as:
* Atmospheric optics
* Clinical vision
* Coherence and Statistical Optics
* Color
* Diffraction and gratings
* Image processing
* Machine vision
* Physiological optics
* Polarization
* Scattering
* Signal processing
* Thin films
* Visual optics
Also: j opt soc am a.