{"title":"Multiplexed Pathogenic Bacteria Detection via a Two-Dimensional Encoded Fluorescent Microsphere System.","authors":"Mengjiao Wang, Letian Li, Luyu Wei, Yu Han, Yiping Chen","doi":"10.1021/acs.nanolett.4c05471","DOIUrl":null,"url":null,"abstract":"<p><p>We developed an advanced microscopy imaging platform enabling amplification-free, multiplex detection of pathogenic bacteria in food and clinical samples, eliminating the need for DNA extraction. This platform leverages two-dimensional encoded polystyrene (PS) microspheres and an Argonaute-based decoding system to create multiplexed signal libraries. Each PS microsphere probe, encoded with spectrally distinct fluorophores and differing particle sizes, achieves high fluorescence through a tetrahedral DNA-enhanced hybridization chain reaction (TDNA-HCR), significantly enhancing signal intensity and reducing reaction time by 67%. Pathogenic bacteria identification relies on aptamer-specific recognition, which transduces pathogenic bacteria presence into guide DNA (gDNA) signals that activate <i>Clostridium butyricum</i> Argonaute (CbAgo) for precise DNA cleavage, encoding pathogenic bacteria type and concentration in the color, size, and count of fluorescent PS probes. A custom computer vision-powered algorithm processes these signals, offering sensitive detection at 10<sup>2</sup> CFU/mL within 1.5 h, demonstrating significant potential for food safety and clinical diagnostic applications.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":" ","pages":"2256-2265"},"PeriodicalIF":9.6000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c05471","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/31 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We developed an advanced microscopy imaging platform enabling amplification-free, multiplex detection of pathogenic bacteria in food and clinical samples, eliminating the need for DNA extraction. This platform leverages two-dimensional encoded polystyrene (PS) microspheres and an Argonaute-based decoding system to create multiplexed signal libraries. Each PS microsphere probe, encoded with spectrally distinct fluorophores and differing particle sizes, achieves high fluorescence through a tetrahedral DNA-enhanced hybridization chain reaction (TDNA-HCR), significantly enhancing signal intensity and reducing reaction time by 67%. Pathogenic bacteria identification relies on aptamer-specific recognition, which transduces pathogenic bacteria presence into guide DNA (gDNA) signals that activate Clostridium butyricum Argonaute (CbAgo) for precise DNA cleavage, encoding pathogenic bacteria type and concentration in the color, size, and count of fluorescent PS probes. A custom computer vision-powered algorithm processes these signals, offering sensitive detection at 102 CFU/mL within 1.5 h, demonstrating significant potential for food safety and clinical diagnostic applications.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.