{"title":"Development of Novel Piperine-Loaded Mesoporous Silica Nanoparticles: Enhanced Drug Delivery and Comprehensive In Vivo Safety Analysis.","authors":"Rahul Francis, Sudharsan Parthasarathy, Shaza H Aly, Ramanathan Kalyanaraman, Vasuki Boominathan, Siva Vijayakumar Tharumasivam, Mohamed El-Shazly, Brindha Matharasi Murugan, Murugesan Gnanadesigan","doi":"10.1002/cbdv.202401901","DOIUrl":null,"url":null,"abstract":"<p><p>Piperine-loaded mesoporous silica nanoparticles (MSNPs) were synthesized by chemical methods from tetraethylorthosilicate (TEOS) as a precursor, N-cetyl trimethyl ammonium bromide (CTAB) as a surfactant, piperine, distilled water, and sodium hydroxide (NaOH) as a catalyst at 80°C. After stirring the mixture for 20-30 min, the synthesized combined substances were washed with ethanol and the surfactant was removed using hydrochloric acid (HCl). The morphological characterization was assessed by high-resolution-transmission electron microscope (HR-TEM), scanning electron microscopy (field emission [FE]-scanning electron microscopy [SEM]), FE-SEM-energy-dispersive x-ray (EDX), infrared Fourier transform infrared spectroscopic (FTIR), x-ray diffractometer (XRD), dynamic light scattering (DLS), and ultraviolet-visible (UV-VIS). HR-TEM final report showed the amorphous nature of the prepared nanoparticles (NPs). TEM image at 100 nm showed typical ball-like geometry with an average particle size of 13.05 nm. FE-SEM analysis proved that MSNPs loaded with piperine have a spherical shape with various nm ranges starting from 232 to 552 nm. The results of the piperine release test observed 93.70% of the drug (piperine) over 24 h. The in vivo toxicity analysis of piperine-loaded MSNPs tested using adult zebrafish showed no toxic effect. Our developed piperine-loaded MSNPs are favorable for achieving sustained release, a lower dose frequency, and better therapeutic effects.</p>","PeriodicalId":9878,"journal":{"name":"Chemistry & Biodiversity","volume":" ","pages":"e202401901"},"PeriodicalIF":2.3000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry & Biodiversity","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cbdv.202401901","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Piperine-loaded mesoporous silica nanoparticles (MSNPs) were synthesized by chemical methods from tetraethylorthosilicate (TEOS) as a precursor, N-cetyl trimethyl ammonium bromide (CTAB) as a surfactant, piperine, distilled water, and sodium hydroxide (NaOH) as a catalyst at 80°C. After stirring the mixture for 20-30 min, the synthesized combined substances were washed with ethanol and the surfactant was removed using hydrochloric acid (HCl). The morphological characterization was assessed by high-resolution-transmission electron microscope (HR-TEM), scanning electron microscopy (field emission [FE]-scanning electron microscopy [SEM]), FE-SEM-energy-dispersive x-ray (EDX), infrared Fourier transform infrared spectroscopic (FTIR), x-ray diffractometer (XRD), dynamic light scattering (DLS), and ultraviolet-visible (UV-VIS). HR-TEM final report showed the amorphous nature of the prepared nanoparticles (NPs). TEM image at 100 nm showed typical ball-like geometry with an average particle size of 13.05 nm. FE-SEM analysis proved that MSNPs loaded with piperine have a spherical shape with various nm ranges starting from 232 to 552 nm. The results of the piperine release test observed 93.70% of the drug (piperine) over 24 h. The in vivo toxicity analysis of piperine-loaded MSNPs tested using adult zebrafish showed no toxic effect. Our developed piperine-loaded MSNPs are favorable for achieving sustained release, a lower dose frequency, and better therapeutic effects.
期刊介绍:
Chemistry & Biodiversity serves as a high-quality publishing forum covering a wide range of biorelevant topics for a truly international audience. This journal publishes both field-specific and interdisciplinary contributions on all aspects of biologically relevant chemistry research in the form of full-length original papers, short communications, invited reviews, and commentaries. It covers all research fields straddling the border between the chemical and biological sciences, with the ultimate goal of broadening our understanding of how nature works at a molecular level.
Since 2017, Chemistry & Biodiversity is published in an online-only format.