Tae Woog Kang, Yoon Jae Lee, Bruno Rigo, Ira Soltis, Jimin Lee, Hodam Kim, Gaorong Wang, Nathan Zavanelli, Eyas Ayesh, Wali Sohail, Houriyeh Majditehran, Scott H Kozin, Frank L Hammond, Woon-Hong Yeo
{"title":"Soft Nanomembrane Sensor-Enabled Wearable Multimodal Sensing and Feedback System for Upper-Limb Sensory Impairment Assistance.","authors":"Tae Woog Kang, Yoon Jae Lee, Bruno Rigo, Ira Soltis, Jimin Lee, Hodam Kim, Gaorong Wang, Nathan Zavanelli, Eyas Ayesh, Wali Sohail, Houriyeh Majditehran, Scott H Kozin, Frank L Hammond, Woon-Hong Yeo","doi":"10.1021/acsnano.4c15530","DOIUrl":null,"url":null,"abstract":"<p><p>Sensory rehabilitation in pediatric patients with traumatic spinal cord injury is challenging due to the ongoing development of their nervous systems. However, these sensory problems often result in nonuse of the impaired limb, which disturbs impaired limb rehabilitation and leads to overuse of the contralateral limb and other physical or psychological issues that may persist. Here, we introduce a soft nanomembrane sensor-enabled wearable glove system that wirelessly delivers a haptic sensation from the hand with tactile feedback responses for sensory impairment assistance. The smart glove system uses gold nanomembranes, copper-elastomer composites, and laser-induced graphene for the sensitive detection of pressure, temperature, and strain changes. The nanomaterial sensors are integrated with low-profile tactile actuators and wireless flexible electronics to offer real-time sensory feedback. The wearable system's thin-film sensors demonstrate 98% and 97% accuracy in detecting pressure and finger flexion, respectively, along with a detection coverage of real-life temperature changes as an effective rehabilitation tool. Collectively, the upper-limb sensory impairment assistance system embodies the latest in soft materials and wearable technology to incorporate soft sensors and miniaturized actuators and maximize its compatibility with human users, offering a promising solution for patient sensory rehabilitation.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":" ","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c15530","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Sensory rehabilitation in pediatric patients with traumatic spinal cord injury is challenging due to the ongoing development of their nervous systems. However, these sensory problems often result in nonuse of the impaired limb, which disturbs impaired limb rehabilitation and leads to overuse of the contralateral limb and other physical or psychological issues that may persist. Here, we introduce a soft nanomembrane sensor-enabled wearable glove system that wirelessly delivers a haptic sensation from the hand with tactile feedback responses for sensory impairment assistance. The smart glove system uses gold nanomembranes, copper-elastomer composites, and laser-induced graphene for the sensitive detection of pressure, temperature, and strain changes. The nanomaterial sensors are integrated with low-profile tactile actuators and wireless flexible electronics to offer real-time sensory feedback. The wearable system's thin-film sensors demonstrate 98% and 97% accuracy in detecting pressure and finger flexion, respectively, along with a detection coverage of real-life temperature changes as an effective rehabilitation tool. Collectively, the upper-limb sensory impairment assistance system embodies the latest in soft materials and wearable technology to incorporate soft sensors and miniaturized actuators and maximize its compatibility with human users, offering a promising solution for patient sensory rehabilitation.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.