Soft Nanomembrane Sensor-Enabled Wearable Multimodal Sensing and Feedback System for Upper-Limb Sensory Impairment Assistance.

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-01-31 DOI:10.1021/acsnano.4c15530
Tae Woog Kang, Yoon Jae Lee, Bruno Rigo, Ira Soltis, Jimin Lee, Hodam Kim, Gaorong Wang, Nathan Zavanelli, Eyas Ayesh, Wali Sohail, Houriyeh Majditehran, Scott H Kozin, Frank L Hammond, Woon-Hong Yeo
{"title":"Soft Nanomembrane Sensor-Enabled Wearable Multimodal Sensing and Feedback System for Upper-Limb Sensory Impairment Assistance.","authors":"Tae Woog Kang, Yoon Jae Lee, Bruno Rigo, Ira Soltis, Jimin Lee, Hodam Kim, Gaorong Wang, Nathan Zavanelli, Eyas Ayesh, Wali Sohail, Houriyeh Majditehran, Scott H Kozin, Frank L Hammond, Woon-Hong Yeo","doi":"10.1021/acsnano.4c15530","DOIUrl":null,"url":null,"abstract":"<p><p>Sensory rehabilitation in pediatric patients with traumatic spinal cord injury is challenging due to the ongoing development of their nervous systems. However, these sensory problems often result in nonuse of the impaired limb, which disturbs impaired limb rehabilitation and leads to overuse of the contralateral limb and other physical or psychological issues that may persist. Here, we introduce a soft nanomembrane sensor-enabled wearable glove system that wirelessly delivers a haptic sensation from the hand with tactile feedback responses for sensory impairment assistance. The smart glove system uses gold nanomembranes, copper-elastomer composites, and laser-induced graphene for the sensitive detection of pressure, temperature, and strain changes. The nanomaterial sensors are integrated with low-profile tactile actuators and wireless flexible electronics to offer real-time sensory feedback. The wearable system's thin-film sensors demonstrate 98% and 97% accuracy in detecting pressure and finger flexion, respectively, along with a detection coverage of real-life temperature changes as an effective rehabilitation tool. Collectively, the upper-limb sensory impairment assistance system embodies the latest in soft materials and wearable technology to incorporate soft sensors and miniaturized actuators and maximize its compatibility with human users, offering a promising solution for patient sensory rehabilitation.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":" ","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c15530","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Sensory rehabilitation in pediatric patients with traumatic spinal cord injury is challenging due to the ongoing development of their nervous systems. However, these sensory problems often result in nonuse of the impaired limb, which disturbs impaired limb rehabilitation and leads to overuse of the contralateral limb and other physical or psychological issues that may persist. Here, we introduce a soft nanomembrane sensor-enabled wearable glove system that wirelessly delivers a haptic sensation from the hand with tactile feedback responses for sensory impairment assistance. The smart glove system uses gold nanomembranes, copper-elastomer composites, and laser-induced graphene for the sensitive detection of pressure, temperature, and strain changes. The nanomaterial sensors are integrated with low-profile tactile actuators and wireless flexible electronics to offer real-time sensory feedback. The wearable system's thin-film sensors demonstrate 98% and 97% accuracy in detecting pressure and finger flexion, respectively, along with a detection coverage of real-life temperature changes as an effective rehabilitation tool. Collectively, the upper-limb sensory impairment assistance system embodies the latest in soft materials and wearable technology to incorporate soft sensors and miniaturized actuators and maximize its compatibility with human users, offering a promising solution for patient sensory rehabilitation.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信