Prediction of Hospital Mortality in Patients with ST Segment Elevation Myocardial Infarction: Evolution of Risk Measurement Techniques and Assessment of Their Effectiveness (Review).

Sovremennye tekhnologii v meditsine Pub Date : 2024-01-01 Epub Date: 2024-08-30 DOI:10.17691/stm2024.16.4.07
B I Geltser, I G Domzhalov, K I Shakhgeldyan, N S Kuksin, E A Kokarev, R L Pak, V N Kotelnikov
{"title":"Prediction of Hospital Mortality in Patients with ST Segment Elevation Myocardial Infarction: Evolution of Risk Measurement Techniques and Assessment of Their Effectiveness (Review).","authors":"B I Geltser, I G Domzhalov, K I Shakhgeldyan, N S Kuksin, E A Kokarev, R L Pak, V N Kotelnikov","doi":"10.17691/stm2024.16.4.07","DOIUrl":null,"url":null,"abstract":"<p><p>Risk stratification of hospital mortality in patients with ST segment elevation myocardial infarction on the electrocardiogram is an important part of the specialized medical care provision. The systematic review presents scientific literature data characterizing the predictive value of both classical prognostic scales (GRACE, CADDILLAC, TIMI risk score for STEMI, RECORD, etc.) and new risk measurement tools developed on the basis of modern machine learning techniques. Most studies on this issue are often focused on the search for new predictors of adverse events, which allow to detail the relations between indicators of the clinical and functional status of patients and the end point of the study. Here, an important task is to develop hospital mortality prognostic algorithms characterized by explainable artificial intelligence and trusted by doctors.</p>","PeriodicalId":520289,"journal":{"name":"Sovremennye tekhnologii v meditsine","volume":"16 4","pages":"61-72"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11773138/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sovremennye tekhnologii v meditsine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17691/stm2024.16.4.07","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/30 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Risk stratification of hospital mortality in patients with ST segment elevation myocardial infarction on the electrocardiogram is an important part of the specialized medical care provision. The systematic review presents scientific literature data characterizing the predictive value of both classical prognostic scales (GRACE, CADDILLAC, TIMI risk score for STEMI, RECORD, etc.) and new risk measurement tools developed on the basis of modern machine learning techniques. Most studies on this issue are often focused on the search for new predictors of adverse events, which allow to detail the relations between indicators of the clinical and functional status of patients and the end point of the study. Here, an important task is to develop hospital mortality prognostic algorithms characterized by explainable artificial intelligence and trusted by doctors.

ST段抬高型心肌梗死患者住院死亡率的预测:风险测量技术的发展及其有效性评估(综述)
心电图上ST段抬高型心肌梗死患者住院死亡率的风险分层是专科医疗服务的重要组成部分。系统回顾了科学文献数据,描述了经典预后量表(GRACE, cadillac, STEMI的TIMI风险评分,RECORD等)和基于现代机器学习技术开发的新风险测量工具的预测价值。关于这一问题的大多数研究往往集中在寻找新的不良事件预测因子上,这可以详细描述患者临床和功能状态指标与研究终点之间的关系。在这里,一个重要的任务是开发以可解释的人工智能为特征并被医生信任的医院死亡率预测算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信