Unravelling the aromatic symphony: redirecting bifunctional mushroom synthases towards linalool monofunctionality.

Rehka T, Fu Lin, Xixian Chen, Congqiang Zhang
{"title":"Unravelling the aromatic symphony: redirecting bifunctional mushroom synthases towards linalool monofunctionality.","authors":"Rehka T, Fu Lin, Xixian Chen, Congqiang Zhang","doi":"10.1007/s44307-024-00056-2","DOIUrl":null,"url":null,"abstract":"<p><p>Enzymes are the cornerstone of biocatalysis, biosynthesis and synthetic biology. However, their applicability is often limited by low substrate selectivity. A prime example is the bifunctional linalool/nerolidol synthase (LNS) that can use both geranyl diphosphate (GPP) and farnesyl diphosphate (FPP) to produce linalool and nerolidol, respectively. This bifunctionality can lead to undesired byproducts in synthetic biology applications. To enhance enzyme specificity and create monofunctional linalool synthases, we modified amino acids in the loop between helices C and D of four bifunctional mushroom LNSs. Through these modifications, we successfully shifted the substrate preference of two LNSs (ApLNS from Agrocybe pediades and HsLNS from Hypholoma sublateritium) from FPP towards GPP. Although complete monofunctionality was not achieved, we significantly increased linalool yield by 13 times while minimizing nerolidol production to 1% of the wildtype HsLNS. Docking simulations revealed a substantial reduction in the FPP binding score compared to that of the wildtype. Molecular dynamics simulations suggested that Tyr300 in the apo HsLNS mutant has a greater tendency to adopt an inward orientation. Together with Met77, the inward-facing Tyr300 creates a steric barrier that prevents the longer FPP molecule from entering the substrate binding pocket, thereby greatly reducing its activity towards FPP. This study demonstrates the potential of enzyme engineering to design substrate-specific terpene synthases, which is a challenging task and few successful examples are available. The insights gained can inform future enzyme design efforts, including the development of artificial intelligence models.</p>","PeriodicalId":519913,"journal":{"name":"Advanced biotechnology","volume":"3 1","pages":"3"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11740858/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s44307-024-00056-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Enzymes are the cornerstone of biocatalysis, biosynthesis and synthetic biology. However, their applicability is often limited by low substrate selectivity. A prime example is the bifunctional linalool/nerolidol synthase (LNS) that can use both geranyl diphosphate (GPP) and farnesyl diphosphate (FPP) to produce linalool and nerolidol, respectively. This bifunctionality can lead to undesired byproducts in synthetic biology applications. To enhance enzyme specificity and create monofunctional linalool synthases, we modified amino acids in the loop between helices C and D of four bifunctional mushroom LNSs. Through these modifications, we successfully shifted the substrate preference of two LNSs (ApLNS from Agrocybe pediades and HsLNS from Hypholoma sublateritium) from FPP towards GPP. Although complete monofunctionality was not achieved, we significantly increased linalool yield by 13 times while minimizing nerolidol production to 1% of the wildtype HsLNS. Docking simulations revealed a substantial reduction in the FPP binding score compared to that of the wildtype. Molecular dynamics simulations suggested that Tyr300 in the apo HsLNS mutant has a greater tendency to adopt an inward orientation. Together with Met77, the inward-facing Tyr300 creates a steric barrier that prevents the longer FPP molecule from entering the substrate binding pocket, thereby greatly reducing its activity towards FPP. This study demonstrates the potential of enzyme engineering to design substrate-specific terpene synthases, which is a challenging task and few successful examples are available. The insights gained can inform future enzyme design efforts, including the development of artificial intelligence models.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信