Unravelling the aromatic symphony: redirecting bifunctional mushroom synthases towards linalool monofunctionality.

Rehka T, Fu Lin, Xixian Chen, Congqiang Zhang
{"title":"Unravelling the aromatic symphony: redirecting bifunctional mushroom synthases towards linalool monofunctionality.","authors":"Rehka T, Fu Lin, Xixian Chen, Congqiang Zhang","doi":"10.1007/s44307-024-00056-2","DOIUrl":null,"url":null,"abstract":"<p><p>Enzymes are the cornerstone of biocatalysis, biosynthesis and synthetic biology. However, their applicability is often limited by low substrate selectivity. A prime example is the bifunctional linalool/nerolidol synthase (LNS) that can use both geranyl diphosphate (GPP) and farnesyl diphosphate (FPP) to produce linalool and nerolidol, respectively. This bifunctionality can lead to undesired byproducts in synthetic biology applications. To enhance enzyme specificity and create monofunctional linalool synthases, we modified amino acids in the loop between helices C and D of four bifunctional mushroom LNSs. Through these modifications, we successfully shifted the substrate preference of two LNSs (ApLNS from Agrocybe pediades and HsLNS from Hypholoma sublateritium) from FPP towards GPP. Although complete monofunctionality was not achieved, we significantly increased linalool yield by 13 times while minimizing nerolidol production to 1% of the wildtype HsLNS. Docking simulations revealed a substantial reduction in the FPP binding score compared to that of the wildtype. Molecular dynamics simulations suggested that Tyr300 in the apo HsLNS mutant has a greater tendency to adopt an inward orientation. Together with Met77, the inward-facing Tyr300 creates a steric barrier that prevents the longer FPP molecule from entering the substrate binding pocket, thereby greatly reducing its activity towards FPP. This study demonstrates the potential of enzyme engineering to design substrate-specific terpene synthases, which is a challenging task and few successful examples are available. The insights gained can inform future enzyme design efforts, including the development of artificial intelligence models.</p>","PeriodicalId":519913,"journal":{"name":"Advanced biotechnology","volume":"3 1","pages":"3"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11740858/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s44307-024-00056-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Enzymes are the cornerstone of biocatalysis, biosynthesis and synthetic biology. However, their applicability is often limited by low substrate selectivity. A prime example is the bifunctional linalool/nerolidol synthase (LNS) that can use both geranyl diphosphate (GPP) and farnesyl diphosphate (FPP) to produce linalool and nerolidol, respectively. This bifunctionality can lead to undesired byproducts in synthetic biology applications. To enhance enzyme specificity and create monofunctional linalool synthases, we modified amino acids in the loop between helices C and D of four bifunctional mushroom LNSs. Through these modifications, we successfully shifted the substrate preference of two LNSs (ApLNS from Agrocybe pediades and HsLNS from Hypholoma sublateritium) from FPP towards GPP. Although complete monofunctionality was not achieved, we significantly increased linalool yield by 13 times while minimizing nerolidol production to 1% of the wildtype HsLNS. Docking simulations revealed a substantial reduction in the FPP binding score compared to that of the wildtype. Molecular dynamics simulations suggested that Tyr300 in the apo HsLNS mutant has a greater tendency to adopt an inward orientation. Together with Met77, the inward-facing Tyr300 creates a steric barrier that prevents the longer FPP molecule from entering the substrate binding pocket, thereby greatly reducing its activity towards FPP. This study demonstrates the potential of enzyme engineering to design substrate-specific terpene synthases, which is a challenging task and few successful examples are available. The insights gained can inform future enzyme design efforts, including the development of artificial intelligence models.

解开芳香交响乐:重定向双功能蘑菇合成酶向芳樟醇单功能。
酶是生物催化、生物合成和合成生物学的基石。然而,它们的适用性往往受到底物选择性低的限制。一个典型的例子是双功能芳樟醇/神经樟醇合成酶(LNS),它可以使用香叶基二磷酸(GPP)和法尼基二磷酸(FPP)分别生产芳樟醇和神经樟醇。这种双重功能可能导致合成生物学应用中不希望的副产物。为了提高酶的特异性并创造单功能的芳樟醇合成酶,我们对四种双功能蘑菇lss的C和D螺旋之间的环中的氨基酸进行了修饰。通过这些修饰,我们成功地将两种lss(来自Agrocybe pediades的ApLNS和来自次白丝菌丝的HsLNS)的底物偏好从FPP转向GPP。虽然没有实现完全的单功能,但我们将芳樟醇的产量显著提高了13倍,同时将神经醇的产量降至野生型HsLNS的1%。对接模拟显示,与野生型相比,FPP结合评分显著降低。分子动力学模拟表明,载脂蛋白HsLNS突变体中的Tyr300更倾向于向内取向。与Met77一起,内向的Tyr300产生一个空间屏障,阻止较长的FPP分子进入底物结合袋,从而大大降低其对FPP的活性。本研究证明了酶工程设计底物特异性萜烯合成酶的潜力,这是一项具有挑战性的任务,成功的例子很少。获得的见解可以为未来的酶设计工作提供信息,包括人工智能模型的开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信