Nature AND nurture: enabling formate-dependent growth in Methanosarcina acetivorans.

Jichen Bao, Tejas Somvanshi, Yufang Tian, Maxime G Laird, Pierre Simon Garcia, Christian Schöne, Michael Rother, Guillaume Borrel, Silvan Scheller
{"title":"Nature AND nurture: enabling formate-dependent growth in Methanosarcina acetivorans.","authors":"Jichen Bao, Tejas Somvanshi, Yufang Tian, Maxime G Laird, Pierre Simon Garcia, Christian Schöne, Michael Rother, Guillaume Borrel, Silvan Scheller","doi":"10.1111/febs.17409","DOIUrl":null,"url":null,"abstract":"<p><p>Methanosarcinales are versatile methanogens, capable of regulating most types of methanogenic pathways. Despite the versatile metabolic flexibility of Methanosarcinales, no member of this order has been shown to use formate for methanogenesis. In the present study, we identified a cytosolic formate dehydrogenase (FdhAB) present in several Methanosarcinales, likely acquired by independent horizontal gene transfers after an early evolutionary loss, encouraging re-evaluation of our understanding of formate utilization in Methanosarcinales. To explore whether formate-dependent (methyl-reducing or CO<sub>2</sub>-reducing) methanogenesis can occur in Methanosarcinales, we engineered two different strains of Methanosarcina acetivorans by functionally expressing FdhAB from Methanosarcina barkeri in M. acetivorans. In the first strain, fdhAB was integrated into the N<sup>5</sup>-methyl- tetrahydrosarcinapterin:coenzyme M methyltransferase (mtr) operon, making it capable of growing by reducing methanol with electrons from formate. In the second strain, fdhAB was integrated into the F<sub>420</sub>-reducing hydrogenase (frh) operon, instead of the mtr operon, enabling its growth with formate as the only source of carbon and energy after adaptive laboratory evolution. In this strain, one CO<sub>2</sub> is reduced to one methane with electrons from oxidizing four formate to four CO<sub>2</sub>, a metabolism reported only in methanogens without cytochromes. Although methanogens without cytochromes typically utilize flavin-based electron bifurcation to generate the ferredoxins needed for CO<sub>2</sub> activation, we hypothesize that, in our engineered strains, reduced ferredoxins are obtained via the Rhodobacter nitrogen fixation complex complex running in reverse. Our work demonstrates formate-dependent methyl-reducing and CO<sub>2</sub>-reducing methanogenesis in M. acetivorans that is enabled by the flexible nature of the microbe working in tandem with the nurturing provided.</p>","PeriodicalId":94226,"journal":{"name":"The FEBS journal","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The FEBS journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/febs.17409","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Methanosarcinales are versatile methanogens, capable of regulating most types of methanogenic pathways. Despite the versatile metabolic flexibility of Methanosarcinales, no member of this order has been shown to use formate for methanogenesis. In the present study, we identified a cytosolic formate dehydrogenase (FdhAB) present in several Methanosarcinales, likely acquired by independent horizontal gene transfers after an early evolutionary loss, encouraging re-evaluation of our understanding of formate utilization in Methanosarcinales. To explore whether formate-dependent (methyl-reducing or CO2-reducing) methanogenesis can occur in Methanosarcinales, we engineered two different strains of Methanosarcina acetivorans by functionally expressing FdhAB from Methanosarcina barkeri in M. acetivorans. In the first strain, fdhAB was integrated into the N5-methyl- tetrahydrosarcinapterin:coenzyme M methyltransferase (mtr) operon, making it capable of growing by reducing methanol with electrons from formate. In the second strain, fdhAB was integrated into the F420-reducing hydrogenase (frh) operon, instead of the mtr operon, enabling its growth with formate as the only source of carbon and energy after adaptive laboratory evolution. In this strain, one CO2 is reduced to one methane with electrons from oxidizing four formate to four CO2, a metabolism reported only in methanogens without cytochromes. Although methanogens without cytochromes typically utilize flavin-based electron bifurcation to generate the ferredoxins needed for CO2 activation, we hypothesize that, in our engineered strains, reduced ferredoxins are obtained via the Rhodobacter nitrogen fixation complex complex running in reverse. Our work demonstrates formate-dependent methyl-reducing and CO2-reducing methanogenesis in M. acetivorans that is enabled by the flexible nature of the microbe working in tandem with the nurturing provided.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信