MIRD Pamphlet No. 32: A MIRD Recovery Coefficient Model for Resolution Characterization and Shape-Specific Partial-Volume Correction.

Harry Marquis, C Ross Schmidtlein, Robin de Nijs, Pablo Mínguez Gabiña, Johan Gustafsson, Gunjan Kayal, Juan C Ocampo Ramos, Lukas M Carter, Dale L Bailey, Adam L Kesner
{"title":"MIRD Pamphlet No. 32: A MIRD Recovery Coefficient Model for Resolution Characterization and Shape-Specific Partial-Volume Correction.","authors":"Harry Marquis, C Ross Schmidtlein, Robin de Nijs, Pablo Mínguez Gabiña, Johan Gustafsson, Gunjan Kayal, Juan C Ocampo Ramos, Lukas M Carter, Dale L Bailey, Adam L Kesner","doi":"10.2967/jnumed.124.268520","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate quantification in emission tomography is essential for internal radiopharmaceutical therapy dosimetry. Mean activity concentration measurements in objects with diameters less than 10 times the full width at half maximum of the imaging system's spatial resolution are significantly affected (>10%) by the partial-volume effect. This study develops a framework for PET and SPECT spatial resolution characterization and proposes 2 MIRD recovery coefficient models-a geometric mean approximation (RECOVER-GM) and an empirical model (RECOVER-EM)-that provide shape-specific partial-volume correction (PVC). The models were validated using simulations and phantom experiments, with a comparative PVC test on ellipsoidal phantoms demonstrating that the RECOVER models significantly reduced error in activity quantification by factors of approximately 1.3-5.7 compared with conventional sphere-based corrections. The proposed recovery coefficient models and PVC methodology provide a robust framework for improved region-based PVC, including corrections for nonspherical tumor volumes. This work is part of the ongoing MIRDsoft.org project that aims to enhance accessibility to advanced dosimetry tools for improved disease characterization, treatment planning, and radiopharmaceutical therapy dosimetry.</p>","PeriodicalId":94099,"journal":{"name":"Journal of nuclear medicine : official publication, Society of Nuclear Medicine","volume":" ","pages":"457-465"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11876732/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of nuclear medicine : official publication, Society of Nuclear Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2967/jnumed.124.268520","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate quantification in emission tomography is essential for internal radiopharmaceutical therapy dosimetry. Mean activity concentration measurements in objects with diameters less than 10 times the full width at half maximum of the imaging system's spatial resolution are significantly affected (>10%) by the partial-volume effect. This study develops a framework for PET and SPECT spatial resolution characterization and proposes 2 MIRD recovery coefficient models-a geometric mean approximation (RECOVER-GM) and an empirical model (RECOVER-EM)-that provide shape-specific partial-volume correction (PVC). The models were validated using simulations and phantom experiments, with a comparative PVC test on ellipsoidal phantoms demonstrating that the RECOVER models significantly reduced error in activity quantification by factors of approximately 1.3-5.7 compared with conventional sphere-based corrections. The proposed recovery coefficient models and PVC methodology provide a robust framework for improved region-based PVC, including corrections for nonspherical tumor volumes. This work is part of the ongoing MIRDsoft.org project that aims to enhance accessibility to advanced dosimetry tools for improved disease characterization, treatment planning, and radiopharmaceutical therapy dosimetry.

MIRD小册子第32号:用于分辨率表征和形状特定部分体积校正的MIRD恢复系数模型。
放射层析成像的精确定量对放射药物治疗剂量测定至关重要。在成像系统最大空间分辨率的一半情况下,直径小于10倍全宽的物体的平均活度浓度测量结果受到部分体积效应的显著影响(bbb10 %)。本研究开发了PET和SPECT空间分辨率表征的框架,并提出了2个MIRD恢复系数模型-几何平均近似(recovery - gm)和经验模型(recovery - em)-提供形状特定的部分体积校正(PVC)。通过模拟和模拟实验对模型进行了验证,并对椭球体进行了对比PVC测试,结果表明,与传统的基于球体的校正相比,RECOVER模型显著降低了活度量化的误差,误差约为1.3-5.7。所提出的恢复系数模型和PVC方法为改进基于区域的PVC提供了一个强大的框架,包括对非球形肿瘤体积的校正。这项工作是正在进行的MIRDsoft.org项目的一部分,该项目旨在提高先进剂量测定工具的可及性,以改进疾病表征、治疗计划和放射性药物治疗剂量测定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信