Xiaowen Wang , Shuai Liu , Qianwen Xu , Xinquan Shao
{"title":"Distributed multi-agent reinforcement learning for multi-objective optimal dispatch of microgrids","authors":"Xiaowen Wang , Shuai Liu , Qianwen Xu , Xinquan Shao","doi":"10.1016/j.isatra.2025.01.009","DOIUrl":null,"url":null,"abstract":"<div><div>The distributed microgrids cooperate to accomplish economic and environmental objectives, which have a vital impact on maintaining the reliable and economic operation of power systems. Therefore a distributed multi-agent reinforcement learning (MARL) algorithm is put forward incorporating the actor-critic architecture, which learns multiple critics for subtasks and utilizes only information from neighbors to find dispatch strategy. Based on our proposed algorithm, multi-objective optimal dispatch problem of microgrids with continuous state changes and power values is dealt with. Meanwhile, the computation and communication resources requirements are greatly reduced and the privacy of each agent is protected in the process of information interaction. In addition, the convergence for the proposed algorithm is guaranteed with the adoption of linear function approximation. Simulation results validate the performance of the algorithm, demonstrating its effectiveness in achieving multi-objective optimal dispatch in microgrids.</div></div>","PeriodicalId":14660,"journal":{"name":"ISA transactions","volume":"158 ","pages":"Pages 130-140"},"PeriodicalIF":6.3000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISA transactions","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019057825000096","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The distributed microgrids cooperate to accomplish economic and environmental objectives, which have a vital impact on maintaining the reliable and economic operation of power systems. Therefore a distributed multi-agent reinforcement learning (MARL) algorithm is put forward incorporating the actor-critic architecture, which learns multiple critics for subtasks and utilizes only information from neighbors to find dispatch strategy. Based on our proposed algorithm, multi-objective optimal dispatch problem of microgrids with continuous state changes and power values is dealt with. Meanwhile, the computation and communication resources requirements are greatly reduced and the privacy of each agent is protected in the process of information interaction. In addition, the convergence for the proposed algorithm is guaranteed with the adoption of linear function approximation. Simulation results validate the performance of the algorithm, demonstrating its effectiveness in achieving multi-objective optimal dispatch in microgrids.
期刊介绍:
ISA Transactions serves as a platform for showcasing advancements in measurement and automation, catering to both industrial practitioners and applied researchers. It covers a wide array of topics within measurement, including sensors, signal processing, data analysis, and fault detection, supported by techniques such as artificial intelligence and communication systems. Automation topics encompass control strategies, modelling, system reliability, and maintenance, alongside optimization and human-machine interaction. The journal targets research and development professionals in control systems, process instrumentation, and automation from academia and industry.